• Journal of neurosurgery · Apr 2017

    Case Reports

    Single-unit analysis of the human posterior hypothalamus and red nucleus during deep brain stimulation for aggressivity.

    • Robert Micieli, Adriana Lucia Lopez Rios, Ricardo Plata Aguilar, Luis Fernando Botero Posada, and William D Hutchison.
    • Departments of 1 Physiology and.
    • J. Neurosurg. 2017 Apr 1; 126 (4): 1158-1164.

    AbstractOBJECTIVE Deep brain stimulation (DBS) of the posterior hypothalamus (PH) has been reported to be effective for aggressive behavior in a number of isolated cases. Few of these case studies have analyzed single-unit recordings in the human PH and none have quantitatively analyzed single units in the red nucleus (RN). The authors report on the properties of ongoing neuronal discharges in bilateral trajectories targeting the PH and the effectiveness of DBS of the PH as a treatment for aggressive behavior. METHODS DBS electrodes were surgically implanted in the PH of 1 awake patient with Sotos syndrome and 3 other anesthetized patients with treatment-resistant aggressivity. Intraoperative extracellular recordings were obtained from the ventral thalamus, PH, and RN and analyzed offline to discriminate single units and measure firing rates and firing patterns. Target location was based on the stereotactic coordinates used by Sano et al. in their 1970 study and the location of the dorsal border of the RN. RESULTS A total of 138 units were analyzed from the 4 patients. Most of the PH units had a slow, irregular discharge (mean [± SD] 4.5 ± 2.7 Hz, n = 68) but some units also had a higher discharge rate (16.7 ± 4.7 Hz, n = 15). Two populations of neurons were observed in the ventral thalamic region as well, one with a high firing rate (mean 16.5 ± 6.5 Hz, n = 5) and one with a low firing rate (mean 4.6 ± 2.8 Hz, n = 6). RN units had a regular firing rate with a mean of 20.4 ± 9.9 Hz and displayed periods of oscillatory activity in the beta range. PH units displayed a prolonged period of inhibition following microstimulation compared with RN units that were not inhibited. Patients under anesthesia showed a trend for lower firing rates in the PH but not in the RN. All 4 patients displayed a reduction in their aggressive behavior after surgery. CONCLUSIONS During PH DBS, microelectrode recordings can provide an additional mechanism to help identify the PH target and surrounding structures to be avoided such as the RN. PH units can be distinguished from ventral thalamic units based on their response to focal microstimulation. The RN has a characteristic higher firing rate and a pattern of beta oscillations in the spike trains. The effect of the anesthetic administered should be considered when using microelectrode recordings. The results of this study, along with previous reports, suggest that PH DBS may be an effective treatment for aggression.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.