• Diabetes Metab. Res. Rev. · Nov 2002

    Comparative Study

    Impaired glucose tolerance and insulinopenia in the GK-rat causes peripheral neuropathy.

    • Yuichi Murakawa, Weixian Zhang, Christopher R Pierson, Tom Brismar, Claes-Göran Ostenson, Suad Efendic, and Anders A F Sima.
    • Department of Pathology, Wayne State University, School of Medicine, Detroit, MI, USA.
    • Diabetes Metab. Res. Rev. 2002 Nov 1; 18 (6): 473-83.

    BackgroundRecent studies indicate that impaired glucose tolerance (IGT) in man is a causative factor in idiopathic sensory neuropathy, and that insulinopenia may contribute substantially to the severity of diabetic peripheral neuropathy. The effect of sustained IGT and progressive insulinopenia in the absence of overt hyperglycemia on peripheral nerve abnormalities was examined in the Goto-Kakizaki (GK)-rat.MethodsTwo and eighteen-month-old GK rats with decreased glucose tolerance and overt insulinopenia, respectively, were examined with respect to nerve function, structure, morphometry and molecular integrity, and were compared to age-matched control rats.ResultsBoth 2-(p < 0.001) and 18-month-old (p < 0.001) GK rats showed reduced body weight. Blood glucose levels following glucose tolerance tests were elevated in both the 2-month and the 18-month-old GK rats. Fasting plasma insulin levels in the 2-month GK rats were increased threefold (p < 0.05) but decreased by 71% (p < 0.001) in the 18-month GK rats. The two-month GK rats showed a normal nerve conduction velocity, whereas in the 18-month GK rats it was reduced to 76% (p < 0.001) of control values. No morphometric abnormalities were found in the 2-month GK rats, whereas the 18-month GK rats showed loss of small myelinated fibers (p < 0.001), atrophy and loss of unmyelinated axons (p < 0.05) and an increased (p < 0.01) frequency of regenerating fibers. In the older GK rats, both mRNA and protein expression of nerve growth factor (NGF) in the sciatic nerve were significantly reduced (p < 0.001 and p < 0.05), and NGFR TrkA (high affinity NGF receptor) and NGFRp75 (low affinity NGF-receptor) protein expression was reduced in dorsal root ganglia (DRG) (both p < 0.05). These changes were accompanied by significantly reduced protein expressions of substance P (SP) and calcitonin gene-related protein (CGRP) in DRG's (both p < 0.001) as well as a 40% (p < 0.001) decrease in SP and a 62% (p < 0.001) decrease in CGRP-positive DRG neurons. In the sciatic nerve, SP and CGRP protein expression was decreased by 71% (p < 0.01) and 79% (p < 0.01), respectively.ConclusionIGT combined with hyperinsulinemia for 2 months have no detectable effect on peripheral nerve function or structure. In contrast, IGT and subsequent insulinopenia result in a functional and structural neuropathy associated with impaired NGF support and neuropeptide synthesis. We suggest that these abnormalities are mainly due to insulinopenia rather than hyperglycemia.Copyright 2002 John Wiley & Sons, Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,642 articles already indexed!

We guarantee your privacy. Your email address will not be shared.