• Human brain mapping · Aug 2009

    Neural substrates of low-frequency repetitive transcranial magnetic stimulation during movement in healthy subjects and acute stroke patients. A PET study.

    • Fabrice Conchou, Isabelle Loubinoux, Evelyne Castel-Lacanal, Anne Le Tinnier, Angélique Gerdelat-Mas, Nathalie Faure-Marie, Helene Gros, Claire Thalamas, Fabienne Calvas, Isabelle Berry, François Chollet, and Marion Simonetta Moreau.
    • INSERM U 825 Toulouse, F-31059 France.
    • Hum Brain Mapp. 2009 Aug 1; 30 (8): 2542-57.

    AbstractThe aim of the study was to investigate, with an rTMS/PET protocol, the after-effects induced by 1-Hz repetitive transcranial magnetic stimulation (rTMS) in the regional cerebral blood flow (rCBF) of the primary motor cortex (M1) contralateral to that stimulated during a movement. Eighteen healthy subjects underwent a baseline PET scan followed, in randomized order, by a session of Real/Sham low-frequency (1 Hz) subthreshold rTMS over the right M1 for 23 min. The site of stimulation was fMRI-guided. After each rTMS session (real or sham), subjects underwent behavioral hand motor tests and four PET scans. During the first two scans, ten subjects (RH group) moved the right hand ipsilateral to the stimulated site and eight subjects (LH group) moved the left contralateral hand. All remained still during the last two scans (rest). Two stroke patients underwent the same protocol with rTMS applied on contralesional M1. Compared with Sham-rTMS, Real-rTMS over the right M1 was followed by a significant increase of rCBF during right hand movement in left S1M1, without any significant change in motor performance. The effect lasted less than 1 h. The same rTMS-induced S1M1 overactivation was observed in the two stroke patients. Commissural connectivity between right dorsal premotor cortex and left M1 after real-rTMS was observed with a psychophysiological interaction analysis in healthy subjects. No major changes were found for the left hand. These results give further arguments in favor of a plastic commissural connectivity between M1 both in healthy subjects and in stroke patients, and reinforce the potential for therapeutic benefit of low-frequency rTMS in stroke rehabilitation.(c) 2008 Wiley-Liss, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?

    User can't be blank.

    Content can't be blank.

    Content is too short (minimum is 15 characters).

    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.