• J. Thorac. Cardiovasc. Surg. · Jan 2002

    Fractal or biologically variable delivery of cardioplegic solution prevents diastolic dysfunction after cardiopulmonary bypass.

    • M R Graham, R K Warrian, L G Girling, L Doiron, G R Lefevre, M Cheang, and W A C Mutch.
    • Department of Anesthesia, University of Manitoba, Winnipeg, Manitoba, Canada.
    • J. Thorac. Cardiovasc. Surg. 2002 Jan 1; 123 (1): 63-71.

    ObjectiveTo determine whether myocardial protection is improved by restoring physiologic variability to the cardioplegia pressure signal during cardiopulmonary bypass, we compared cardiac function in pigs in the first hour after either conventional cold-blood cardioplegia (group CC) or computer-controlled biologically variable pulsatile cardioplegia (group BVC).MethodsInvasive monitors and sonomicrometry crystals were placed, and cardiopulmonary bypass was initiated. The aorta was crossclamped, and cold blood cardioplegic solution was infused intermittently through the aortic root with either conventional cardioplegia (n = 8) or biologically variable pulsatile cardioplegia (n = 8; mean pressure, 75 mm Hg for 85 minutes). The crossclamp was released, cardiac function was restored, and separation from cardiopulmonary bypass was completed. With stable temperature and arterial blood gases, hemodynamics and systolic and diastolic indices were compared at 15, 30, and 60 minutes after cardiopulmonary bypass.ResultsDiastolic stiffness doubled from 0.027 +/- 0.016 mm Hg/mm (mean +/- SD) at baseline to 0.055 +/- 0.036 mm Hg/mm (P =.003) at 1 hour after bypass in group CC, associated with increased left ventricular end-diastolic pressure from 9 +/- 2 to 11 +/- 2 mm Hg (P =.001), mean pulmonary artery pressure from 14 +/- 2 to 20 +/- 3 mm Hg (P =.003), and serum lactate levels from 2.0 +/- 0.5 to 5.6 +/- 2.3 mmol/L (P =.008). Systolic function was not affected. In group BVC diastolic stiffness, left ventricular end-diastolic pressure, and pulmonary artery pressure values were not different from control values at any time after bypass, and serum lactate levels were significantly less than with conventional cold blood cardioplegia. Peak pressure variability with biologically variable pulsatile cardioplegia fit a power-law equation (exponent = -3.0; R(2) = 0.97), indicating fractal behavior.ConclusionDiastolic cardiac function is better preserved after cardiopulmonary bypass with biologically variable pulsatile cardioplegia and fractal perfusion. This may be attributed to enhanced microcirculatory perfusion with improved myocardial protection. A model supporting these results is presented.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,642 articles already indexed!

We guarantee your privacy. Your email address will not be shared.