-
Endocrine-related cancer · Aug 2015
Blood and tissue neuroendocrine tumor gene cluster analysis correlate, define hallmarks and predict disease status.
- Mark Kidd, Ignat Drozdov, and Irvin Modlin.
- Wren Laboratories35 NE Industrial Road, Branford, Connecticut 06405, USA.
- Endocr. Relat. Cancer. 2015 Aug 1; 22 (4): 561-75.
AbstractA multianalyte algorithmic assay (MAAA) identifies circulating neuroendocrine tumor (NET) transcripts (n=51) with a sensitivity/specificity of 98%/97%. We evaluated whether blood measurements correlated with tumor tissue transcript analysis. The latter were segregated into gene clusters (GC) that defined clinical 'hallmarks' of neoplasia. A MAAA/cluster integrated algorithm (CIA) was developed as a predictive activity index to define tumor behavior and outcome. We evaluated three groups. Group 1: publically available NET transcriptome databases (n=15; GeneProfiler). Group 2: prospectively collected tumors and matched blood samples (n=22; qRT-PCR). Group 3: prospective clinical blood samples, n=159: stable disease (SD): n=111 and progressive disease (PD): n=48. Regulatory network analysis, linear modeling, principal component analysis (PCA), and receiver operating characteristic analyses were used to delineate neoplasia 'hallmarks' and assess GC predictive utility. Our results demonstrated: group 1: NET transcriptomes identified (92%) genes elevated. Group 2: 98% genes elevated by qPCR (fold change >2, P<0.05). Correlation analysis of matched blood/tumor was highly significant (R(2)=0.7, P<0.0001), and 58% of genes defined nine omic clusters (SSTRome, proliferome, signalome, metabolome, secretome, epigenome, plurome, and apoptome). Group 3: six clusters (SSTRome, proliferome, metabolome, secretome, epigenome, and plurome) differentiated SD from PD (area under the curve (AUC)=0.81). Integration with blood-algorithm amplified the AUC to 0.92±0.02 for differentiating PD and SD. The CIA defined a significantly lower SD score (34.1±2.6%) than in PD (84±2.8%, P<0.0001). In conclusion, circulating transcripts measurements reflect NET tissue values. Integration of biologically relevant GC differentiate SD from PD. Combination of GC data with the blood-algorithm predicted disease status in >92%. Blood transcript measurement predicts NET activity.© 2015 Society for Endocrinology.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.