• Am. J. Respir. Cell Mol. Biol. · Oct 2011

    Toll-like receptor 2 regulates organic dust-induced airway inflammation.

    • Jill A Poole, Todd A Wyatt, Tammy Kielian, Peter Oldenburg, Angela M Gleason, Ashley Bauer, Gregory Golden, William W West, Joseph H Sisson, and Debra J Romberger.
    • Omaha Veterans Affairs Medical Center, Omaha, Nebraska, USA. japoole@unmc.edu
    • Am. J. Respir. Cell Mol. Biol. 2011 Oct 1; 45 (4): 711-9.

    AbstractOrganic dust exposure in agricultural environments results in significant airway inflammatory diseases. Gram-positive cell wall components are present in high concentrations in animal farming dusts, but their role in mediating dust-induced airway inflammation is not clear. This study investigated the role of Toll-like receptor (TLR) 2, a pattern recognition receptor for gram-positive cell wall products, in regulating swine facility organic dust extract (DE)-induced airway inflammation in mice. Isolated lung macrophages from TLR2 knockout mice demonstrated reduced TNF-α, IL-6, keratinocyte chemoattractant/CXCL1, but not macrophage inflammatory protein-2/CXCL2 expression, after DE stimulation ex vivo. Next, using an established mouse model of intranasal inhalation challenge, we analyzed bronchoalveolar lavage fluid and lung tissue in TLR2-deficient and wild-type (WT) mice after single and repetitive DE challenge. Neutrophil influx and select cytokines/chemokines were significantly lower in TLR2-deficient mice at 5 and 24 hours after single DE challenge. After daily exposure to DE for 2 weeks, there were significant reductions in total cellularity, neutrophil influx, and TNF-α, IL-6, CXCL1, but not CXCL2 expression, in TLR2-deficient mice as compared with WT animals. Lung pathology revealed that bronchiolar inflammation, but not alveolar inflammation, was reduced in TLR2-deficient mice after repetitive exposure. Airway hyperresponsiveness to methacholine after dust exposure was similar in both groups. Finally, airway inflammatory responses in WT mice after challenge with a TLR2 agonist, peptidoglycan, resembled DE-induced responses. Collectively, these results demonstrate that the TLR2 pathway is important in regulating swine facility organic dust-induced airway inflammation, which suggests the importance of TLR2 agonists in mediating large animal farming-induced airway inflammatory responses.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…