• Neurocritical care · Jun 2017

    Association of Early Hemodynamic Profile and the Development of Systolic Dysfunction Following Traumatic Brain Injury.

    • Vijay Krishnamoorthy, Ali Rowhani-Rahbar, Nophanan Chaikittisilpa, Edward F Gibbons, Frederick P Rivara, Nancy R Temkin, Alex Quistberg, and Monica S Vavilala.
    • Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, BB-1469, Seattle, WA, 98195, USA. vkrish@u.washington.edu.
    • Neurocrit Care. 2017 Jun 1; 26 (3): 379387379-387.

    BackgroundWhile systolic dysfunction has been observed following traumatic brain injury (TBI), the relationship between early hemodynamics and the development of systolic dysfunction has not been investigated. Our study aimed to determine the early hemodynamic profile that is associated with the development of systolic dysfunction after TBI.MethodsWe conducted a prospective cohort study among patients under 65 years old without cardiac comorbidities who sustained moderate-severe TBI. Transthoracic echocardiography was performed within the first day after TBI to assess for systolic dysfunction. Hourly systolic blood pressure (SBP), mean arterial pressure (MAP), heart rate, and confounding clinical variables (sedatives, fluid balance, vasopressors, and osmotherapy) were collected during the first 24 h following admission. Multivariable linear mixed models assessed the early hemodynamic profile in patients who developed systolic dysfunction, compared to patients who did not develop systolic dysfunction.ResultsThirty-two patients were included, and 7 (22 %) developed systolic dysfunction after TBI. Patients who developed systolic dysfunction experienced early elevation of SBP, MAP, and heart rate, compared to patients who did not develop systolic dysfunction (p < 0.01 for all comparisons). Patients who developed systolic dysfunction experienced a greater rate of decrease in SBP [-10.2 mmHg (95 % CI -16.1, -4.2)] and MAP [-9.1 mmHg (95 % CI -13.9, -4.3)] over the first day of hospitalization, compared to patients who did not develop systolic dysfunction (p < 0.01 for both comparisons). All sensitivity analyses revealed no substantial changes from the primary model.ConclusionsPatients who develop systolic dysfunction following TBI have a distinctive hemodynamic profile, with early hypertension and tachycardia, followed by a decrease in blood pressure over the first day after TBI. This profile suggests an early maladaptive catecholamine-excess state as a potential underlying mechanism of TBI-induced systolic dysfunction.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.