-
Environmental pollution · Jan 2000
Quantifying simultaneous fluxes of ozone, carbon dioxide and water vapor above a subalpine forest ecosystem.
- K F Zeller and N T Nikolov.
- USDA Forest Service, Rocky Mountain Research Station, 240 W. Prospect, Ft. Collins, CO 80526, USA. k.zeller@lamar.colostate.edu
- Environ. Pollut. 2000 Jan 1; 107 (1): 1-20.
AbstractAssessing the long-term exchange of trace gases and energy between terrestrial ecosystems and the atmosphere is an important priority of the current climate change research. In this regard, it is particularly significant to provide valid data on simultaneous fluxes of carbon, water vapor and pollutants over representative ecosystems. Eddy covariance measurements and model analyses of such combined fluxes over a subalpine coniferous forest in southern Wyoming (USA) are presented. While the exchange of water vapor and ozone are successfully measured by the eddy covariance system, fluxes of carbon dioxide (CO(2)) are uncertain. This is established by comparing measured fluxes with simulations produced by a detailed biophysical model (FORFLUX). The bias in CO(2) flux measurements is partially attributed to below-canopy advection caused by a complex terrain. We emphasize the difficulty of obtaining continuous long-term flux data in mountainous areas by direct measurements. Instrumental records are combined with simulation models as a feasible approach to assess seasonal and annual ecosystem exchange of carbon, water and ozone in alpine environments. The viability of this approach is demonstrated by: (1) showing the ability of the FORFLUX model to predict observed fluxes over a 9-day period in the summer of 1996; and (2) applying the model to estimate seasonal dynamics and annual totals of ozone deposition and carbon, and water vapor exchange at our study site. Estimated fluxes above this subalpine ecosystem in 1996 are: 195 g C m(-2) year(-1) net ecosystem production, 277 g C m(-2) year(-1) net primary production, 535 mm year(-1) total evapo-transpiration, 174 mm year(-1) canopy transpiration, 2.9 g m(-2) year(-1) total ozone deposition, and 1.72 g O(3) m(-2) year(-1) plant ozone uptake via leaf stomata. Given the large portion of non-stomatal ozone uptake (i.e. 41% of the total annual flux) predicted for this site, we suggest that future research of pollution-vegetation interactions should relate plant response to actively assimilated ozone by foliage rather than to total deposition. In this regard, we propose the Physiological Ozone Uptake Per Unit of Leaf Area (POUPULA) as a practical index for quantifying vegetation vulnerability to ozone damage. We estimate POUPULA to be 0.614 g O(3) m(-2) leaf area year(-1) at our subalpine site in 1996.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.