-
Am. J. Respir. Cell Mol. Biol. · Nov 2012
Sphingosine-1-phosphate receptor-3 is a novel biomarker in acute lung injury.
- Xiaoguang Sun, Patrick A Singleton, Eleftheria Letsiou, Jing Zhao, Patrick Belvitch, Saad Sammani, Eddie T Chiang, Liliana Moreno-Vinasco, Michael S Wade, Tong Zhou, Bin Liu, Ioannis Parastatidis, Leonor Thomson, Harry Ischiropoulos, Viswanathan Natarajan, Jeffrey R Jacobson, Roberto F Machado, Steven M Dudek, and Joe G N Garcia.
- Institute for Personalized Respiratory Medicine, College of Medicine, University of Illinois at Chicago, 914 South Wood St., MC 719, Chicago, IL 60637, USA.
- Am. J. Respir. Cell Mol. Biol. 2012 Nov 1; 47 (5): 628-36.
AbstractThe inflamed lung exhibits oxidative and nitrative modifications of multiple target proteins, potentially reflecting disease severity and progression. We identified sphingosine-1-phosphate receptor-3 (S1PR3), a critical signaling molecule mediating cell proliferation and vascular permeability, as a nitrated plasma protein in mice with acute lung injury (ALI). We explored S1PR3 as a potential biomarker in murine and human ALI. In vivo nitrated and total S1PR3 concentrations were determined by immunoprecipitation and microarray studies in mice, and by ELISA in human plasma. In vitro nitrated S1PR3 concentrations were evaluated in human lung vascular endothelial cells (ECs) or within microparticles shed from ECs after exposure to barrier-disrupting agonists (LPS, low-molecular-weight hyaluronan, and thrombin). The effects of S1PR3-containing microparticles on EC barrier function were assessed by transendothelial electrical resistance (TER). Nitrated S1PR3 was identified in the plasma of murine ALI and in humans with severe sepsis-induced ALI. Elevated total S1PR3 plasma concentrations (> 251 pg/ml) were linked to sepsis and ALI mortality. In vitro EC exposure to barrier-disrupting agents induced S1PR3 nitration and the shedding of S1PR3-containing microparticles, which significantly reduced TER, consistent with increased permeability. These changes were attenuated by reduced S1PR3 expression (small interfering RNAs). These results suggest that microparticles containing nitrated S1PR3 shed into the circulation during inflammatory lung states, and represent a novel ALI biomarker linked to disease severity and outcome.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.