-
Journal of neurosurgery · Oct 2018
A computational fluid dynamics simulation framework for ventricular catheter design optimization.
- Sofy H Weisenberg, Stephanie C TerMaath, Charlotte N Barbier, Judith C Hill, and James A Killeffer.
- 1Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville.
- J. Neurosurg. 2018 Oct 1; 129 (4): 1067-1077.
AbstractIn this research an optimization methodology and 3D computational fluid dynamics algorithm were coupled to reach an important design objective for ventricular catheters: uniform inlet flow distribution. The optimized catheter design presented significantly improves on previous designs explored in the literature and on standard catheter designs used clinically. The automated, iterative fluid simulation framework described in this work can be used to rapidly explore design parameter influence on other flow-related objectives in the future.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.