• JACC Cardiovasc Imaging · Dec 2016

    Multicenter Study

    Improving the CAC Score by Addition of Regional Measures of Calcium Distribution: Multi-Ethnic Study of Atherosclerosis.

    • Michael J Blaha, Matthew J Budoff, Rajesh Tota-Maharaj, Zeina A Dardari, Nathan D Wong, Richard A Kronmal, John Eng, Wendy S Post, Roger S Blumenthal, and Khurram Nasir.
    • Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, Maryland. Electronic address: mblaha1@jhmi.edu.
    • JACC Cardiovasc Imaging. 2016 Dec 1; 9 (12): 1407-1416.

    ObjectivesThe aim of this study was to investigate whether inclusion of simple measures of calcified plaque distribution might improve the ability of the traditional Agatston coronary artery calcium (CAC) score to predict cardiovascular events.BackgroundAgatston CAC scoring does not include information on the location and distributional pattern of detectable calcified plaque.MethodsWe studied 3,262 (50%) individuals with baseline CAC >0 from MESA (Multi-Ethnic Study of Atherosclerosis). Multivessel CAC was defined by the number of coronary vessels with CAC (scored 1 to 4, including the left main). The "diffusivity index" was calculated as: 1 - (CAC in most affected vessel/total CAC), and was used to group participants into concentrated and diffuse CAC patterns. Multivariable Cox proportional hazards regression, area under the curve, and net reclassification improvement analyses were performed for both coronary heart disease (CHD) and cardiovascular disease (CVD) events to assess whether measures of regional CAC distribution add to the traditional Agatston CAC score.ResultsMean age of the population was 66 ± 10 years, with 42% women. Median follow-up was 10.0 (9.5 to 10.7) years and there were 368 CHD and 493 CVD events during follow-up. Considerable heterogeneity existed between CAC score group and number of vessels with CAC (p < 0.01). Addition of number of vessels with CAC significantly improved capacity to predict CHD and CVD events in survival analysis (hazard ratio: 1.9 to 3.5 for 4-vessel vs. 1-vessel CAC), area under the curve analysis (C-statistic improvement of 0.01 to 0.033), and net reclassification improvement analysis (category-less net reclassification improvement 0.10 to 0.45). Although a diffuse CAC pattern was associated with worse outcomes in participants with ≥2 vessels with CAC (hazard ratio: 1.33 to 1.41; p < 0.05), adding this variable to the Agatston CAC score and number of vessels with CAC did not further improve global risk prediction.ConclusionsThe number of coronary arteries with calcified plaque, indicating increasingly "diffuse" multivessel subclinical atherosclerosis, adds significantly to the traditional Agatston CAC score for the prediction of CHD and CVD events.Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.