• Injury · Mar 2018

    Observational Study

    Development and validation of an ICD-10-based disability predictive index for patients admitted to hospitals with trauma.

    • Tomoki Wada, Hideo Yasunaga, Hayato Yamana, Hiroki Matsui, Kiyohide Fushimi, and Naoto Morimura.
    • Department of Emergency and Critical Care Medicine, The University of Tokyo Hospital, Tokyo, Japan. Electronic address: wadat-eme@h.u-tokyo.ac.jp.
    • Injury. 2018 Mar 1; 49 (3): 556563556-563.

    BackgroundThere was no established disability predictive measurement for patients with trauma that could be used in administrative claims databases. The aim of the present study was to develop and validate a diagnosis-based disability predictive index for severe physical disability at discharge using the International Classification of Diseases, 10th revision (ICD-10) coding.MethodsThis retrospective observational study used the Diagnosis Procedure Combination database in Japan. Patients who were admitted to hospitals with trauma and discharged alive from 01 April 2010 to 31 March 2015 were included. Pediatric patients under 15 years old were excluded. Data for patients admitted to hospitals from 01 April 2010 to 31 March 2013 was used for development of a disability predictive index (derivation cohort), while data for patients admitted to hospitals from 01 April 2013 to 31 March 2015 was used for the internal validation (validation cohort). The outcome of interest was severe physical disability defined as the Barthel Index score of <60 at discharge. Trauma-related ICD-10 codes were categorized into 36 injury groups with reference to the categorization used in the Global Burden of Diseases study 2013. A multivariable logistic regression analysis was performed for the outcome using the injury groups and patient baseline characteristics including patient age, sex, and Charlson Comorbidity Index (CCI) score in the derivation cohort. A score corresponding to a regression coefficient was assigned to each injury group. The disability predictive index for each patient was defined as the sum of the scores. The predictive performance of the index was validated using the receiver operating characteristic curve analysis in the validation cohort.ResultsThe derivation cohort included 1,475,158 patients, while the validation cohort included 939,659 patients. Of the 939,659 patients, 235,382 (25.0%) were discharged with severe physical disability. The c-statistics of the disability predictive index was 0.795 (95% confidence interval [CI] 0.794-0.795), while that of a model using the disability predictive index and patient baseline characteristics was 0.856 (95% CI 0.855-0.857).ConclusionsSevere physical disability at discharge may be well predicted with patient age, sex, CCI score, and the diagnosis-based disability predictive index in patients admitted to hospitals with trauma.Copyright © 2018 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,642 articles already indexed!

We guarantee your privacy. Your email address will not be shared.