• Journal of neurotrauma · Feb 2019

    Longitudinal optogenetic motor mapping revealed structural and functional impairments and enhanced corticorubral projection following contusive spinal cord injury in mice.

    • Jun Qian, Wei Wu, Wenhui Xiong, Zhi Chai, Xiao-Ming Xu, and Xiaoming Jin.
    • 1 Department of Anatomy and Cell Biology & Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana.
    • J. Neurotrauma. 2019 Feb 1; 36 (3): 485-499.

    AbstractCurrent evaluation of impairment and repair after spinal cord injury (SCI) is largely dependent on behavioral assessment and histological analysis of injured tissue and pathways. Here, we evaluated whether transcranial optogenetic mapping of motor cortex could reflect longitudinal structural and functional damage and recovery after SCI. In Thy1-Channelrhodopsin2 transgenic mice, repeated motor mappings were made by recording optogenetically evoked electromyograms (EMGs) of a hindlimb at baseline and 1 day and 2, 4, and 6 weeks after mild, moderate, and severe spinal cord contusion. Injuries caused initial decreases in EMG amplitude, losses of motor map, and subsequent partial recoveries, all of which corresponded to injury severity. Reductions in map size were positively correlated with motor performance, as measured by Basso Mouse Scale, rota-rod, and grid walk tests, at different time points, as well as with lesion area at spinal cord epicenter at 6 weeks post-SCI. Retrograde tracing with Fluoro-Gold showed decreased numbers of cortico- and rubrospinal neurons, with the latter being negatively correlated with motor map size. Combined retro- and anterograde tracing and immunostaining revealed more neurons activated in red nucleus by cortical stimulation and enhanced corticorubral axons and synapses in red nucleus after SCI. Electrophysiological recordings showed lower threshold and higher amplitude of corticorubral synaptic response after SCI. We conclude that transcranial optogenetic motor mapping is sensitive and efficient for longitudinal evaluation of impairment and plasticity of SCI, and that spinal cord contusion induces stronger anatomical and functional corticorubral connection that may contribute to spontaneous recovery of motor function.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.