• Br J Anaesth · Oct 2018

    Comparative Study

    Comparison between neurally-assisted, controlled, and physiologically variable ventilation in healthy rabbits.

    • M Walesa, S Bayat, G Albu, A Baudat, F Petak, and W Habre.
    • Unit for Anaesthesiological Investigations, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland.
    • Br J Anaesth. 2018 Oct 1; 121 (4): 918-927.

    BackgroundVarious ventilation strategies have been proposed to reduce ventilation-induced lung injury that occurs even in individuals with healthy lungs. We compared new modalities based on an individualised physiological variable ventilation model to a conventional pressure-controlled mode.MethodsRabbits were anaesthetised and ventilated for up to 7 h using pressure-controlled ventilation with (Group PCS, n=10), and without (Group PC, n=10) regular sighs. Variable ventilation in the other two groups was achieved via a pre-recorded spontaneous breathing pattern [Group physiologically variable ventilation (PVV), n=10] or triggered by the electrical activity of the diaphragm [Group neurally adjusted ventilation assist (NAVA), n=9]. Respiratory elastance, haemodynamic profile, and gas exchange were assessed throughout the ventilation period. Cellular profile, cytokine content of bronchoalveolar lavage fluid, and wet-to-dry lung weight ratio (W/D) were determined after protocol completion. Lung injury scores were obtained from histological analysis.ResultsMarked deteriorations in elastance were observed (median and 95% confidence interval) in Group PC [48.6 (22)% increase from baseline], while no changes were detected in Groups PCS [3.6 (8.1)%], PVV [18.7 (13.2)%], and NAVA [-1.4 (12.2)%]. In comparison with Group PC, Group PVV had a lower lung injury score [0.29 (0.02) compared with 0.36 (0.05), P<0.05] and W/D ratio [5.6 (0.1) compared with 6.2 (0.3), P<0.05]. There was no difference in blood gas, haemodynamic, or inflammatory parameters between the groups.ConclusionsIndividualised PVV based on a pre-recorded spontaneous breathing pattern provides adequate gas exchange and promotes a level of lung protection. This ventilation modality could be of benefit during prolonged anaesthesia, in which assisted ventilation is not possible because of the absence of a respiratory drive.Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.