-
J. Thorac. Cardiovasc. Surg. · Apr 2019
Development of a high-fidelity minimally invasive mitral valve surgery simulator.
- Peyman Sardari Nia, Jean H T Daemen, and Jos G Maessen.
- Department of Cardiothoracic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands; Faculty of Health, Medicine and Life Sciences (FHML), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands. Electronic address: peyman.sardarinia@mumc.nl.
- J. Thorac. Cardiovasc. Surg. 2019 Apr 1; 157 (4): 1567-1574.
ObjectivesThe aim of this study was to develop a high-fidelity minimally invasive mitral valve surgery (MIMVS) simulator.MethodsThe process of industrial serial design was applied based on pre-set requirements, acquired by interviewing experienced mitral surgeons. A thoracic torso with endoscopic and robotic access and disposable silicone mitral valve apparatus with a feedback system was developed. The feedback system was based on 4 cameras around the silicone valve and an edge detection algorithm to calculate suture depth and width. Validity of simulator measurements was assessed by comparing simulator-generated values with measurements done manually on 3-dimensional reconstructed micro-computed tomography scan of the same sutures. Independent surgeons tested the simulator between 2014 and 2018, whereupon an evaluation was done through a questionnaire.ResultsThe feedback system was able to provide width and depth measurements, which were subsequently scored by comparison to pre-set target values. Depth did not significantly differ between simulator and micro-computed tomography scan measurements (P = .139). Width differed significantly (P = .001), whereupon a significant regression equation was found (P < .0001) to calibrate the simulator. After calibration, no significant difference was found (P = .865). In total, 99 surgeons tested the simulator and more than agreed with the statements that the simulator is a good method for training MIMVS, and that the mitral valve and suture placement looked and felt realistic.ConclusionsWe successfully developed a high-fidelity MIMVS simulator for endoscopic and robotic approaches. The simulator provides a platform to train skills in an objective and reproducible manner. Future studies are needed to provide evidence for its application in training surgeons.Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*,_underline_or**bold**. - Superscript can be denoted by
<sup>text</sup>and subscript<sub>text</sub>. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3., hyphens-or asterisks*. - Links can be included with:
[my link to pubmed](http://pubmed.com) - Images can be included with:
 - For footnotes use
[^1](This is a footnote.)inline. - Or use an inline reference
[^1]to refer to a longer footnote elseweher in the document[^1]: This is a long footnote..