-
- L E Hodgson, B D Dimitrov, P J Roderick, R Venn, and L G Forni.
- Academic Unit of Primary Care and Population Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK.
- BMJ Open. 2017 Mar 8; 7 (3): e013511.
ObjectivesHospital-acquired acute kidney injury (HA-AKI) is associated with a high risk of mortality. Prediction models or rules may identify those most at risk of HA-AKI. This study externally validated one of the few clinical prediction rules (CPRs) derived in a general medicine cohort using clinical information and data from an acute hospitals electronic system on admission: the acute kidney injury prediction score (APS).Design, Setting And ParticipantsExternal validation in a single UK non-specialist acute hospital (2013-2015, 12 554 episodes); four cohorts: adult medical and general surgical populations, with and without a known preadmission baseline serum creatinine (SCr).MethodsPerformance assessed by discrimination using area under the receiver operating characteristic curves (AUCROC) and calibration.ResultsHA-AKI incidence within 7 days (kidney disease: improving global outcomes (KDIGO) change in SCr) was 8.1% (n=409) of medical patients with known baseline SCr, 6.6% (n=141) in those without a baseline, 4.9% (n=204) in surgical patients with baseline and 4% (n=49) in those without. Across the four cohorts AUCROC were: medical with known baseline 0.65 (95% CIs 0.62 to 0.67) and no baseline 0.71 (0.67 to 0.75), surgical with baseline 0.66 (0.62 to 0.70) and no baseline 0.68 (0.58 to 0.75). For calibration, in medicine and surgical cohorts with baseline SCr, Hosmer-Lemeshow p values were non-significant, suggesting acceptable calibration. In the medical cohort, at a cut-off of five points on the APS to predict HA-AKI, positive predictive value was 16% (13-18%) and negative predictive value 94% (93-94%). Of medical patients with HA-AKI, those with an APS ≥5 had a significantly increased risk of death (28% vs 18%, OR 1.8 (95% CI 1.1 to 2.9), p=0.015).ConclusionsOn external validation the APS on admission shows moderate discrimination and acceptable calibration to predict HA-AKI and may be useful as a severity marker when HA-AKI occurs. Harnessing linked data from primary care may be one way to achieve more accurate risk prediction.Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*,_underline_or**bold**. - Superscript can be denoted by
<sup>text</sup>and subscript<sub>text</sub>. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3., hyphens-or asterisks*. - Links can be included with:
[my link to pubmed](http://pubmed.com) - Images can be included with:
 - For footnotes use
[^1](This is a footnote.)inline. - Or use an inline reference
[^1]to refer to a longer footnote elseweher in the document[^1]: This is a long footnote..