• Critical care medicine · Apr 2019

    Validation and Critical Evaluation of the Effective Arterial Elastance in Critically Ill Patients.

    • Mathieu Jozwiak, Sandrine Millasseau, Christian Richard, Xavier Monnet, Pablo Mercado, François Dépret, Jean-Emmanuel Alphonsine, Jean-Louis Teboul, and Denis Chemla.
    • AP-HP, Hôpitaux universitaires Paris-Sud, Hôpital de Bicêtre, service de réanimation médicale, Le Kremlin-Bicêtre, F-94270 France.
    • Crit. Care Med. 2019 Apr 1; 47 (4): e317-e324.

    ObjectivesFirst, to validate bedside estimates of effective arterial elastance = end-systolic pressure/stroke volume in critically ill patients. Second, to document the added value of effective arterial elastance, which is increasingly used as an index of left ventricular afterload.DesignProspective study.SettingMedical ICU.PatientsFifty hemodynamically stable and spontaneously breathing patients equipped with a femoral (n = 21) or radial (n = 29) catheter were entered in a "comparison" study. Thirty ventilated patients with invasive hemodynamic monitoring (PiCCO-2; Pulsion Medical Systems, Feldkirchen, Germany), in whom fluid administration was planned were entered in a " dynamic" study.InterventionsIn the "dynamic" study, data were obtained before/after a 500 mL saline administration.Measurements And Main ResultsAccording to the "cardiocentric" view, end-systolic pressure was considered the classic index of left ventricular afterload. End-systolic pressure was calculated as 0.9 × systolic arterial pressure at the carotid, femoral, and radial artery level. In the "comparison" study, carotid tonometry allowed the calculation of the reference effective arterial elastance value (1.73 ± 0.62 mm Hg/mL). The femoral estimate of effective arterial elastance was more accurate and precise than the radial estimate. In the "dynamic" study, fluid administration increased stroke volume and end-systolic pressure, whereas effective arterial elastance (femoral estimate) and systemic vascular resistance did not change. Effective arterial elastance was related to systemic vascular resistance at baseline (r = 0.89) and fluid-induced changes in effective arterial elastance and systemic vascular resistance were correlated (r = 0.88). In the 15 fluid responders (cardiac index increases ≥ 15%), fluid administration increased end-systolic pressure and decreased effective arterial elastance and systemic vascular resistance (each p < 0.05). In the 15 fluid nonresponders, end-systolic pressure increased (p < 0.05), whereas effective arterial elastance and systemic vascular resistance remained unchanged.ConclusionsIn critically ill patients, effective arterial elastance may be reliably estimated at bedside (0.9 × systolic femoral pressure/stroke volume). We support the use of this validated estimate of effective arterial elastance when coupled with an index of left ventricular contractility for studying the ventricular-arterial coupling. Conversely, effective arterial elastance should not be used in isolation as an index of left ventricular afterload.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…