• Journal of neurosurgery · Oct 2018

    A wearable mixed-reality holographic computer for guiding external ventricular drain insertion at the bedside.

    • Ye Li, Xiaolei Chen, Ning Wang, Wenyao Zhang, Dawei Li, Lei Zhang, Xin Qu, Weitao Cheng, Yueqiao Xu, Wenjin Chen, and Qiumei Yang.
    • Department of Neurosurgery, Xuanwu Hospital, Capital Medical University.
    • J. Neurosurg. 2018 Oct 1: 181-8.

    ObjectiveThe goal of this study was to explore the feasibility and accuracy of using a wearable mixed-reality holographic computer to guide external ventricular drain (EVD) insertion and thus improve on the accuracy of the classic freehand insertion method for EVD insertion. The authors also sought to provide a clinically applicable workflow demonstration. MethodsPre- and postoperative CT scanning were performed routinely by the authors for every patient who needed EVD insertion. Hologram-guided EVD placement was prospectively applied in 15 patients between August and November 2017. During surgical planning, model reconstruction and trajectory calculation for each patient were completed using preoperative CT. By wearing a Microsoft HoloLens, the neurosurgeon was able to visualize the preoperative CT-generated holograms of the surgical plan and perform EVD placement by keeping the catheter aligned with the holographic trajectory. Fifteen patients who had undergone classic freehand EVD insertion were retrospectively included as controls. The feasibility and accuracy of the hologram-guided technique were evaluated by comparing the time required, number of passes, and target deviation for hologram-guided EVD placement with those for classic freehand EVD insertion. ResultsSurgical planning and hologram visualization were performed in all 15 cases in which EVD insertion involved holographic guidance. No adverse events related to the hologram-guided procedures were observed. The mean ± SD additional time before the surgical part of the procedure began was 40.20 ± 10.74 minutes. The average number of passes was 1.07 ± 0.258 in the holographic guidance group, compared with 2.33 ± 0.98 in the control group (p < 0.01). The mean target deviation was 4.34 ± 1.63 mm in the holographic guidance group and 11.26 ± 4.83 mm in the control group (p < 0.01). ConclusionsThis study demonstrates the use of a head-mounted mixed-reality holographic computer to successfully perform hologram-assisted bedside EVD insertion. A full set of clinically applicable workflow images is presented to show how medical imaging data can be used by the neurosurgeon to visualize patient-specific holograms that can intuitively guide hands-on operation. The authors also provide preliminary confirmation of the feasibility and accuracy of this hologram-guided EVD insertion technique.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.