• Journal of neurosurgery · Dec 2018

    A real-time optimal inverse planning for Gamma Knife radiosurgery by convex optimization: description of the system and first dosimetry data.

    • Marc Levivier, Rafael E Carrillo, Rémi Charrier, André Martin, and Jean-Philippe Thiran.
    • 1Department of Neurosurgery and Gamma Knife Center, Lausanne University Hospital, Lausanne.
    • J. Neurosurg. 2018 Dec 1; 129 (Suppl1): 111-117.

    AbstractOBJECTIVEThe authors developed a new, real-time interactive inverse planning approach, based on a fully convex framework, to be used for Gamma Knife radiosurgery.METHODSThe convex framework is based on the precomputation of a dictionary composed of the individual dose distributions of all possible shots, considering all their possible locations, sizes, and shapes inside the target volume. The convex problem is solved to determine the plan, i.e., which shots and with which weights, that will actually be used, considering a sparsity constraint on the shots to fulfill the constraints while minimizing the beam-on time. The system is called IntuitivePlan and allows data to be transferred from generated dose plans into the Gamma Knife treatment planning software for further dosimetry evaluation.RESULTSThe system has been very efficiently implemented, and an optimal plan is usually obtained in less than 1 to 2 minutes, depending on the complexity of the problem, on a desktop computer or in only a few minutes on a high-end laptop. Dosimetry data from 5 cases, 2 meningiomas and 3 vestibular schwannomas, were generated with IntuitivePlan. Results of evaluation of the dosimetry characteristics are very satisfactory and adequate in terms of conformity, selectivity, gradient, protection of organs at risk, and treatment time.CONCLUSIONSThe possibility of using optimal, interactive real-time inverse planning in conjunction with the Leksell Gamma Knife opens new perspectives in radiosurgery, especially considering the potential use of the full capabilities of the latest generations of the Leksell Gamma Knife. This approach gives new users the possibility of using the system for easier and quicker access to good-quality plans with a shorter technical training period and opens avenues for new planning strategies for expert users. The use of a convex optimization approach allows an optimal plan to be provided in a very short processing time. This way, innovative graphical user interfaces can be developed, allowing the user to interact directly with the planning system to graphically define the desired dose map and to modify on-the-fly the dose map by moving, in a very user-friendly manner, the isodose surfaces of an initial plan. Further independent quantitative prospective evaluation comparing inverse planned and forward planned cases is warranted to validate this novel and promising treatment planning approach.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…