• J. Thorac. Cardiovasc. Surg. · Nov 2019

    Computational fluid dynamic simulations of a cavopulmonary assist device for failing Fontan circulation.

    • W C Patrick Lin, Matthew G Doyle, S Lucy Roche, Osami Honjo, Thomas L Forbes, and Cristina H Amon.
    • Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
    • J. Thorac. Cardiovasc. Surg. 2019 Nov 1; 158 (5): 1424-1433.e5.

    ObjectivesAdult patients who have undergone the Fontan procedure are highly vulnerable to gradual, progressive circulatory failure, and options to reverse this situation are few. A cavopulmonary assist device could decongest the venous and lymphatic systems, overcome elevated pulmonary vascular resistance, increase cardiac output, and support some of these patients to heart transplant. This study characterizes the performance and challenges of a novel multilumen cannula coupled to an external blood pump proposed as a potential Fontan cavopulmonary assist strategy.MethodsComputational fluid dynamic simulations were conducted for 3 extracardiac Fontan geometries consisting of 1 idealized model and 2 patient-specific models. A range of physiologic flow rates and pump assist levels were simulated to calculate the pressure gain provided by the multilumen cannula. Hemolysis index was estimated for the idealized model with Lagrangian particle tracking and 2 variations of the power-law. Wall shear stresses were also examined.ResultsPressure gains up to 4 and 9 mm Hg were achieved for the idealized and patient-specific models, respectively. Pressure gains increased with both higher cardiac output and larger pump intake through the external pump. Flow-weighted hemolysis show hemoglobin damage levels to be several times lower than the 2% threshold at the highest pump intake flow cases. Wall shear stress predictions depict elevated areas in the pulmonary vessels and regions of the cannula device.ConclusionsThe cannula tested in this study shows promise as a percutaneous option to bridge support in some patients with a failing extracardiac Fontan. Limitations identified will be addressed in future design iterations and in ongoing experimental tests.Copyright © 2019 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…