• Cochrane Db Syst Rev · Jul 2018

    Review

    Interventions for the treatment of brain radionecrosis after radiotherapy or radiosurgery.

    • Caroline Chung, Andrew Bryant, and Paul D Brown.
    • Radiation Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas, USA, 77030.
    • Cochrane Db Syst Rev. 2018 Jul 9; 7: CD011492.

    BackgroundBrain radionecrosis (tissue death caused by radiation) can occur following high-dose radiotherapy to brain tissue and can have a significant impact on a person's quality of life (QoL) and function. The underlying pathophysiological mechanism remains unclear for this condition, which makes establishing effective treatments challenging.ObjectivesTo assess the effectiveness of interventions used for the treatment of brain radionecrosis in adults over 18 years old.Search MethodsIn October 2017, we searched the Cochrane Register of Controlled Trials (CENTRAL), MEDLINE, Embase and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) for eligible studies. We also searched unpublished data through Physicians Data Query, www.controlled-trials.com/rct, www.clinicaltrials.gov, and www.cancer.gov/clinicaltrials for ongoing trials and handsearched relevant conference material.Selection CriteriaWe included randomised controlled trials (RCTs) of any intervention directed to treat brain radionecrosis in adults over 18 years old previously treated with radiation therapy to the brain. We anticipated a limited number of RCTs, so we also planned to include all comparative prospective intervention trials and quasi-randomised trials of interventions for brain radionecrosis in adults as long as these studies had a comparison group that reflects the standard of care (i.e. placebo or corticosteroids). Selection bias was likely to be an issue in all the included non-randomised studies therefore results are interpreted with caution.Data Collection And AnalysisTwo review authors (CC, PB) independently extracted data from selected studies and completed a 'Risk of bias' assessment. For dichotomous outcomes, the odds ratio (OR) for the outcome of interest was reported. For continuous outcomes, treatment effect was reported as mean difference (MD) between treatment arms with 95% confidence intervals (CIs).Main ResultsTwo RCTs and one prospective non-randomised study evaluating pharmacological interventions met the inclusion criteria for this review. As each study evaluated a different drug or intervention using different endpoints, a meta-analysis was not possible. There were no trials of non-pharmacological interventions that met the inclusion criteria.A very small randomised, double-blind, placebo-controlled trial of bevacizumab versus placebo reported that 100% (7/7) of participants on bevacizumab had reduction in brain oedema by at least 25% and reduction in post-gadolinium enhancement, whereas all those receiving placebo had clinical or radiological worsening or both. This was an encouraging finding but due to the small sample size we did not report a relative effect. The authors also failed to provide adequate details regarding the randomisation and blinding procedures Therefore, the certainty of this evidence is low and a larger RCT adhering to reporting standards is needed.An open-label RCT demonstrated a greater reduction in brain oedema (T2 hyperintensity) in the edaravone plus corticosteroid group than in the corticosteroid alone group (MD was 3.03 (95% CI 0.14 to 5.92; low-certainty evidence due to high risk of bias and imprecision); although the result approached borderline significance, there was no evidence of any important difference in the reduction in post-gadolinium enhancement between arms (MD = 0.47, 95% CI - 0.80 to 1.74; low-certainty evidence due to high risk of bias and imprecision).In the RCT of bevacizumab versus placebo, all seven participants receiving bevacizumab were reported to have neurological improvement, whereas five of seven participants on placebo had neurological worsening (very low-certainty evidence due to small sample size and concerns over validity of analyses). While no adverse events were noted with placebo, three severe adverse events were noted with bevacizumab, which included aspiration pneumonia, pulmonary embolus and superior sagittal sinus thrombosis. In the RCT of corticosteroids with or without edaravone, the participants who received the combination treatment were noted to have significantly greater clinical improvement than corticosteroids alone based on LENT/SOMA scale (OR = 2.51, 95% CI 1.26 to 5.01; low-certainty evidence due to open-label design). No differences in treatment toxicities were observed between arms.One included prospective non-randomised study of alpha-tocopherol (vitamin E) versus no active treatment was found but it did not include any radiological assessment. As only one included study was a double-blinded randomised controlled trial, the other studies were prone to selection and detection biases.None of the included studies reported quality of life outcomes or adequately reported details about corticosteroid requirements.A limited number of prospective studies were identified but subsequently excluded as these studies had a limited number of participants evaluating different pharmacological interventions using variable endpoints.Authors' ConclusionsThere is a lack of good certainty evidence to help quantify the risks and benefits of interventions for the treatment of brain radionecrosis after radiotherapy or radiosurgery. In an RCT of 14 patients, bevacizumab showed radiological response which was associated with minimal improvement in cognition or symptom severity. Although it was a randomised trial by design, the small sample size limits the quality of data. A trial of edaravone plus corticosteroids versus corticosteroids alone reported greater reduction in the surrounding oedema with combination treatment but no effect on the enhancing radionecrosis lesion. Due to the open-label design and wide confidence intervals in the results, the quality of this data was also low. There was no evidence to support any non-pharmacological interventions for the treatment of radionecrosis. Further prospective randomised studies of pharmacological and non-pharmacological interventions are needed to generate stronger evidence. Two ongoing RCTs, one evaluating bevacizumab and one evaluating hyperbaric oxygen therapy were identified.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.