• Middle East J Anaesthesiol · Jun 1998

    Review

    Adverse effects of neuromuscular blockers and their antagonists.

    • M Naguib and M M Magboul.
    • Department of Otolaryngology-Head & Neck Surgery, American University of Beirut-Medical Center.
    • Middle East J Anaesthesiol. 1998 Jun 1; 14 (5): 341-73.

    AbstractAmong all the drugs used for general anesthesia, neuromuscular blockers appear to play a prominent role in the incidence of severe adverse reactions. It now seems likely that most serious adverse drug reactions occurring during anesthesia are immunological in type. The frequency of life-threatening anaphylactic or anaphylactoid reactions occurring during anesthesia has been estimated to be between 1 in 1000 and 1 in 25,000 anesthetic procedures, with the neuromuscular blockers being involved in 80% of cases. The mortality from such serious reactions is reported to be in the range of 3.4 to 6%. The highly immunogenic drug, suxamethonium chloride (succinylcholine), was found to be the most hazardous agent. Drug-specific immunoglobulin E antibodies to suxamethonium chloride and other neuromuscular blockers have been demonstrated. This sensitivity to neuromuscular blockers seems to be a long-lasting phenomenon. During anesthesia, the clinical features of an allergic reaction are often masked. Tachycardia and circulatory collapse may be the only signs of an allergic reaction, and they are easily misdiagnosed. Bronchospasm is reported to be present in about 40% of cases. Successful management of these patients includes stabilisation during the acute reaction and avoidance of future reactions. The latter is based on the identification of the causative drug and potentially cross-reacting compounds. The use of suxamethonium chloride is associated with many other adverse effects, such as fasciculations, myalgia, potassium release, changes in the heart rate, increases in intragastric and intraocular pressures, and malignant hyperthermia. Because of the dangers of hyperkalemic cardiac arrest suxamethonium chloride administration in children with unrecognised muscular dystrophy, there have now been moves to limit the use of this drug in children. Although neuromuscular blockers are designed to specifically block nicotinic cholinergic receptors at the neuromuscular junction, many bind to muscarinic cholinergic receptors on ganglia and smooth muscle, and alter parasympathetically mediated heart rate and airway calibre. Most benzylisoquinolinium muscle relaxants can induce histamine release, especially when they are administered rapidly, which can lead to disturbances of cardiovascular function. In addition, nondepolarising neuromuscular blockers have been implicated in causing generalised weakness following their long term administration to patients on an intensive care unit. The problem with these adverse drug reactions is their upredictable nature. Therefore, prompt recognition with appropriate therapy can help to improve the outcome.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.