• Crit Care · Aug 2019

    Observational Study

    A deep learning model for real-time mortality prediction in critically ill children.

    • Soo Yeon Kim, Saehoon Kim, Joongbum Cho, Young Suh Kim, In Suk Sol, Youngchul Sung, Inhyeok Cho, Minseop Park, Haerin Jang, Yoon Hee Kim, Kyung Won Kim, and Myung Hyun Sohn.
    • Department of Pediatrics, Severance Children's Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
    • Crit Care. 2019 Aug 14; 23 (1): 279.

    BackgroundThe rapid development in big data analytics and the data-rich environment of intensive care units together provide unprecedented opportunities for medical breakthroughs in the field of critical care. We developed and validated a machine learning-based model, the Pediatric Risk of Mortality Prediction Tool (PROMPT), for real-time prediction of all-cause mortality in pediatric intensive care units.MethodsUtilizing two separate retrospective observational cohorts, we conducted model development and validation using a machine learning algorithm with a convolutional neural network. The development cohort comprised 1445 pediatric patients with 1977 medical encounters admitted to intensive care units from January 2011 to December 2017 at Severance Hospital (Seoul, Korea). The validation cohort included 278 patients with 364 medical encounters admitted to the pediatric intensive care unit from January 2016 to November 2017 at Samsung Medical Center.ResultsUsing seven vital signs, along with patient age and body weight on intensive care unit admission, PROMPT achieved an area under the receiver operating characteristic curve in the range of 0.89-0.97 for mortality prediction 6 to 60 h prior to death. Our results demonstrated that PROMPT provided high sensitivity with specificity and outperformed the conventional severity scoring system, the Pediatric Index of Mortality, in predictive ability. Model performance was indistinguishable between the development and validation cohorts.ConclusionsPROMPT is a deep model-based, data-driven early warning score tool that can predict mortality in critically ill children and may be useful for the timely identification of deteriorating patients.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?

    User can't be blank.

    Content can't be blank.

    Content is too short (minimum is 15 characters).

    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.