-
Am. J. Respir. Crit. Care Med. · Mar 1999
A study of twelve Southern California communities with differing levels and types of air pollution. II. Effects on pulmonary function.
- J M Peters, E Avol, W J Gauderman, W S Linn, W Navidi, S J London, H Margolis, E Rappaport, H Vora, H Gong, and D C Thomas.
- Department of Preventive Medicine, University of Southern California School of Medicine, Los Angeles, USA. jpeters@hsc.usc.edu
- Am. J. Respir. Crit. Care Med. 1999 Mar 1; 159 (3): 768-75.
AbstractTo study the possible chronic respiratory effects of air pollutants, we designed and initiated a 10-yr prospective study of Southern California public schoolchildren living in 12 communities with different levels and profiles of air pollution. The design of the study, exposure assessment methods, and survey methods and results related to respiratory symptoms and conditions are described in the accompanying paper. Pulmonary function tests were completed on 3,293 subjects. We evaluated cross-sectionally the effects of air pollution exposures based on data collected in 1986-1990 by existing monitoring stations and data collected by our study team in 1994. Expected relationships were seen between demographic, physical, and other environmental factors and pulmonary function values. When the data were stratified by sex, an association was seen between pollution levels and lower pulmonary function in female subjects, with the associations being stronger for the 1994 exposure data than the 1986-1990 data. After adjustment, PM10, PM2.5, and NO2 were each significantly associated with lower FVC, FEV1, and maximal midexpiratory flow (MMEF); acid vapor with lower FVC, FEV1, peak expiratory flow rate (PEFR), and MMEF; and O3 with lower PEFR and MMEF. Effects were generally larger in those girls spending more time outdoors. Stepwise regression of adjusted pulmonary function values for girls in the 12 communities showed that NO2 was most strongly associated with lower FVC (r = -0.74, p < 0.01), PM2.5 with FEV1 (r = -0.72, p < 0.01), O3 with PEFR (r = -0.75, p < 0.005), and PM2.5 with MMEF (r = -0.80, p < 0.005). There was a statistically significant association between ozone exposure and decreased FVC and FEV1 in girls with asthma. For boys, significant associations were seen between peak O3 exposures and lower FVC and FEV1, but only in those spending more time outdoors. These findings underline the importance of follow-up of this cohort.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*,_underline_or**bold**. - Superscript can be denoted by
<sup>text</sup>and subscript<sub>text</sub>. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3., hyphens-or asterisks*. - Links can be included with:
[my link to pubmed](http://pubmed.com) - Images can be included with:
 - For footnotes use
[^1](This is a footnote.)inline. - Or use an inline reference
[^1]to refer to a longer footnote elseweher in the document[^1]: This is a long footnote..