-
- Satoshi Egawa, Toru Hifumi, Hidetoshi Nakamoto, Yasuhiro Kuroda, and Yuichi Kubota.
- Neurointensive Care Unit, Department of Neurosurgery, and Stroke and Epilepsy Center, TMG Asaka Medical Center, Saitama, Japan.
- Neurocrit Care. 2020 Feb 1; 32 (1): 217225217-225.
Background/ObjectiveSimplified continuous electroencephalogram (cEEG) monitoring has shown improvement in detecting seizures; however, it is insufficient in detecting abnormal EEG patterns, such as periodic discharges (PDs), rhythmic delta activity (RDA), spikes and waves (SW), and continuous slow wave (CS), as well as nonconvulsive status epilepticus (NCSE). Headset-type continuous video EEG monitoring (HS-cv EEG monitoring; AE-120A EEG Headset™, Nihon Kohden, Tokyo, Japan) is a recently developed easy-to-use technology with eight channels. However, its ability to detect abnormal EEG patterns with raw EEG data has not been comprehensively evaluated. We aimed to examine the diagnostic accuracy of HS-cv EEG monitoring in detecting abnormal EEG patterns and NCSE in patients with altered mental status (AMS) with unknown etiology. We also evaluated the time required to initiate HS-cv EEG monitoring in these patients.MethodsWe prospectively observed and retrospectively examined patients who were admitted with AMS between January and December 2017 at the neurointensive care unit at Asakadai Central General Hospital, Saitama, Japan. We excluded patients whose data were missing for various reasons, such as difficulties in recording, and those whose consciousness had recovered between HS-cv EEG and conventional cEEG (C-cEEG) monitoring. For the included patients, we performed HS-cv EEG monitoring followed by C-cEEG monitoring. Definitive diagnosis was confirmed by C-cEEG monitoring with the international 10-20 system. As the primary outcome, we verified the sensitivity and specificity of HS-cv EEG monitoring in detecting abnormal EEG patterns including PDs, RDA, SW, and CS, in detecting the presence of PDs, and in detecting NCSE. As the secondary outcome, we calculated the time to initiate HS-cv EEG monitoring after making the decision.ResultsFifty patients (76.9%) were included in the final analyses. The median age was 72 years, and 66% of the patients were male. The sensitivity and specificity of HS-cv EEG monitoring for detecting abnormal EEG patterns were 0.974 (0.865-0.999) and 0.909 (0.587-0.998), respectively, and for detecting PDs were 0.824 (0.566-0.926) and 0.970 (0.842-0.999), respectively. We diagnosed 13 (26%) patients with NCSE using HS-cv EEG monitoring and could detect NCSE with a sensitivity and specificity of 0.706 (0.440-0.897) and 0.970 (0.842-0.999), respectively. The median time needed to initiate HS-cv EEG was 57 min (5-142).ConclusionsHS-cv EEG monitoring is highly reliable in detecting abnormal EEG patterns, with moderate reliability for PDs and NCSE, and rapidly initiates cEEG monitoring in patients with AMS with unknown etiology.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.