• Journal of critical care · Dec 1996

    Reversal of muscle fatigue in intact rabbits by intravenous potassium chloride.

    • G Gutierrez, R Kiiski, E Fernandez, and D H Lee.
    • Department of Internal Medicine, University of Texas Houston Health Science Center 77030, USA.
    • J Crit Care. 1996 Dec 1; 11 (4): 197-205.

    PurposeSkeletal muscle fatigue has been associated with potassium efflux from the myocytes, resulting in endogenous increases in blood potassium concentration ([K+]). Conversely, exogenous increases in extracellular [K+] potentiates contraction in isolated muscle preparations. The mechanisms responsible for these contradictory effects of [K+] on skeletal muscle function are unknown. Moreover, little is known about the effect of exogenous increases in [K+] on force generation by intact animals, given potassium's deleterious effect on cardiac function.MethodsWe compared the response to exogenous increases in blood [K+] in rabbits given an infusion of potassium chloride (KCl) intravenously (IV) (0.2 mol/L; KCl group; n = 7) to a group given 0.9% sodium chloride (NaCl) (control; n = 7). The rabbits underwent low-frequency, isometric twitch stimulation of the left hindlimb (square wave pulses 100 microseconds, 40V, 0.25 Hz) throughout the experiment. Both groups received 0.9% NaCl (25 mL/h) during the first hour of twitch stimulation and experienced similar decreases in hindlimb forces to 70% of initial force. A continuous infusion of KCl or of saline (60 mL/h) was started, and hindlimb stimulation continued for 2 hours.ResultsThere were no changes in [K+] in the control group, and twitch forces progressively declined during the next 2 hours (369 +/- 47 g to 279 +/- 34 g, P < .01). Arterial [K+] increased in the KCl group from 2.6 +/- 0.1 to 10.1 +/- 0.5 mmol/L (P < .01), and hindlimb twitch forces almost doubled (418 +/- 49 g to 756 +/- 55 g, P < .01). Force frequency curves showed improved contractility in the KCl group at stimulation frequencies below 30 Hz.ConclusionsExogenous increases in blood [K+] potentiate skeletal muscle contraction in intact animals and reverse low-frequency twitch fatigue. A possible mechanism may be the maintenance of intracellular [K+] by hindering K+ efflux from skeletal muscle cells.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…