-
- Autumn J Bullard, Brianna C Hutchison, Jiseon Lee, Cynthia A Chestek, and Parag G Patil.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Neuromodulation. 2020 Jun 1; 23 (4): 411-426.
ObjectiveA new age of neuromodulation is emerging: one of restorative neuroengineering and neuroprosthetics. As novel device systems move toward regulatory evaluation and clinical trials, a critical need arises for evidence-based identification of potential sources of hardware-related complications to assist in clinical trial design and mitigation of potential risk.Materials And MethodsThe objective of this systematic review is to provide a detailed safety analysis for future intracranial, fully implanted, modular neuroprosthetic systems. To achieve this aim, we conducted an evidence-based analysis of hardware complications for the most established clinical intracranial modular system, deep brain stimulation (DBS), as well as the most widely used intracranial human experimental system, the silicon-based (Utah) array.ResultsOf 2328 publications identified, 240 articles met the inclusion criteria and were reviewed for DBS hardware complications. The most reported adverse events were infection (4.57%), internal pulse generator malfunction (3.25%), hemorrhage (2.86%), lead migration (2.58%), lead fracture (2.56%), skin erosion (2.22%), and extension cable malfunction (1.63%). Of 433 publications identified, 76 articles met the inclusion criteria and were reviewed for Utah array complications. Of 48 human subjects implanted with the Utah array, 18 have chronic implants. Few specific complications are described in the literature; hence, implant duration served as a lower bound for complication-free operation. The longest reported duration of a person with a Utah array implant is 1975 days (~5.4 years).ConclusionsThrough systematic review of the clinical and human-trial literature, our study provides the most comprehensive safety review to date of DBS hardware and human neuroprosthetic research using the Utah array. The evidence-based analysis serves as an important reference for investigators seeking to identify hardware-related safety data, a necessity to meet regulatory requirements and to design clinical trials for future intracranial, fully implanted, modular neuroprosthetic systems.© 2019 International Neuromodulation Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.