• JMIR medical informatics · Oct 2019

    A Bayesian Network Analysis of the Diagnostic Process and Its Accuracy to Determine How Clinicians Estimate Cardiac Function in Critically Ill Patients: Prospective Observational Cohort Study.

    • Thomas Kaufmann, José Castela Forte, Bart Hiemstra, Marco A Wiering, Marco Grzegorczyk, Anne H Epema, van der Horst Iwan C C ICC 0000-0003-3891-8522 Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, N, and SICS Study Group.
    • Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
    • JMIR Med Inform. 2019 Oct 30; 7 (4): e15358.

    BackgroundHemodynamic assessment of critically ill patients is a challenging endeavor, and advanced monitoring techniques are often required to guide treatment choices. Given the technical complexity and occasional unavailability of these techniques, estimation of cardiac function based on clinical examination is valuable for critical care physicians to diagnose circulatory shock. Yet, the lack of knowledge on how to best conduct and teach the clinical examination to estimate cardiac function has reduced its accuracy to almost that of "flipping a coin."ObjectiveThe aim of this study was to investigate the decision-making process underlying estimates of cardiac function of patients acutely admitted to the intensive care unit (ICU) based on current standardized clinical examination using Bayesian methods.MethodsPatient data were collected as part of the Simple Intensive Care Studies-I (SICS-I) prospective cohort study. All adult patients consecutively admitted to the ICU with an expected stay longer than 24 hours were included, for whom clinical examination was conducted and cardiac function was estimated. Using these data, first, the probabilistic dependencies between the examiners' estimates and the set of clinically measured variables upon which these rely were analyzed using a Bayesian network. Second, the accuracy of cardiac function estimates was assessed by comparison to the cardiac index values measured by critical care ultrasonography.ResultsA total of 1075 patients were included, of which 783 patients had validated cardiac index measurements. A Bayesian network analysis identified two clinical variables upon which cardiac function estimate is conditionally dependent, namely, noradrenaline administration and presence of delayed capillary refill time or mottling. When the patient received noradrenaline, the probability of cardiac function being estimated as reasonable or good P(ER,G) was lower, irrespective of whether the patient was mechanically ventilated (P[ER,G|ventilation, noradrenaline]=0.63, P[ER,G|ventilation, no noradrenaline]=0.91, P[ER,G|no ventilation, noradrenaline]=0.67, P[ER,G|no ventilation, no noradrenaline]=0.93). The same trend was found for capillary refill time or mottling. Sensitivity of estimating a low cardiac index was 26% and 39% and specificity was 83% and 74% for students and physicians, respectively. Positive and negative likelihood ratios were 1.53 (95% CI 1.19-1.97) and 0.87 (95% CI 0.80-0.95), respectively, overall.ConclusionsThe conditional dependencies between clinical variables and the cardiac function estimates resulted in a network consistent with known physiological relations. Conditional probability queries allow for multiple clinical scenarios to be recreated, which provide insight into the possible thought process underlying the examiners' cardiac function estimates. This information can help develop interactive digital training tools for students and physicians and contribute toward the goal of further improving the diagnostic accuracy of clinical examination in ICU patients.Trial RegistrationClinicalTrials.gov NCT02912624; https://clinicaltrials.gov/ct2/show/NCT02912624.©Thomas Kaufmann, José Castela Forte, Bart Hiemstra, Marco A Wiering, Marco Grzegorczyk, Anne H Epema, Iwan C C van der Horst, SICS Study Group. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 30.10.2019.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.