• Clin Pharmacokinet · Jan 2008

    Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis.

    • Sheila Annie Peters.
    • Discovery DMPK and Bioanalytical Chemistry, Astrazeneca R&D, Mölndal, Sweden. sheila.peters@astrazeneca.com
    • Clin Pharmacokinet. 2008 Jan 1; 47 (4): 261-75.

    Background And ObjectiveThe mechanistic framework of physiologically based pharmacokinetic (PBPK) models makes them uniquely suited to hypothesis testing and lineshape analysis, which help provide valuable insights into mechanisms that contribute to the observed concentration-time profiles. The aim of this article is to evaluate the utility of PBPK models for simulating oral lineshapes by optimizing clearance and distribution parameters through fitting observed intravenous pharmacokinetic profiles.MethodsA generic PBPK model, built in-house using MATLAB software and incorporating absorption, metabolism, distribution, biliary and renal elimination models, was employed for simulation of the concentration-time profiles of nine marketed drugs with diverse physicochemical and pharmacokinetic profiles and absorption rates determined solely by transcellular or paracellular permeability and solubility. The model is based on easily available physicochemical properties of compounds such as the log P, acid dissociation constant and solubility, and in vitro pharmacokinetic data such as Caco-2 permeability, the fraction of the compound unbound in plasma, and microsomal or hepatocyte intrinsic clearance. Clearance and distribution parameters optimized through simulation of intravenous profiles were used to simulate their corresponding oral profiles, which are determined by a multitude of parameters, both compound-dependent and physiological. Comparison of the simulated and observed oral profiles was done using goodness-of-fit parameters such as the reduced chi(2) statistic. Fold errors were calculated for the area under the plasma concentration-time curve (AUC), maximum plasma concentration (C(max)) and time to reach the C(max) (t(max)), to assess the accuracy of predictions.ResultsThe approach of predicting the oral profiles by optimizing the clearance and distribution parameters using the observed intravenous profile seemed to perform well for the nine compounds chosen for the study. The mean fold error for oral pharmacokinetic parameters, such as the C(max), t(max) and AUC, and for lineshape simulation was within 2-fold.ConclusionsThe validation of the generic PBPK model built in-house demonstrated that as long as the absorption profile of a compound is determined solely by solubility and paracellular or transcellular permeability, the PBPK simulations of oral profiles using optimized parameters from intravenous simulations provide reasonably good agreement with the observed profile with respect to both the lineshape fit and prediction of pharmacokinetic parameters. Therefore, any lineshape mismatch between PBPK simulated and observed oral profiles can be interpreted suitably to gain mechanistic insights into the pharmacokinetic processes that have resulted in the observed lineshape. A strategy has been proposed to identify involvement of carrier-mediated transport; clearance saturation; enterohepatic recirculation of the parent compound; extra-hepatic, extra-gut elimination; higher in vivo solubility than predicted in vitro; drug-induced gastric emptying delays; gut loss and regional variation in gut absorption.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.