-
Observational Study
Thromboelastography Reaction-Time Thresholds for Optimal Prediction of Coagulation Factor Deficiency in Trauma.
- Jonathan H Chow, Benjamin Fedeles, Justin E Richards, Kenichi A Tanaka, Jonathan J Morrison, Peter Rock, Thomas M Scalea, Michael A Mazzeffi, and TROPIC-Trauma Investigators.
- Divisions of Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD; Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD. Electronic address: JChow@som.umaryland.edu.
- J. Am. Coll. Surg. 2020 May 1; 230 (5): 798-808.
BackgroundCoagulopathy is common in multitrauma patients and repletion of procoagulant factor deficiency with fresh frozen plasma (FFP) improves hemostasis. Optimal kaolin-thromboelastography thresholds for FFP transfusion in trauma patients have not been well established.Study DesignAdult trauma patients with an Injury Severity Score ≥15 were included in this retrospective observational cohort study. The primary end point was area under the receiver operating characteristic curve (AUROC) for reaction time (R-time) to detect procoagulant factor deficiency, as reflected by an elevated international normalized ratio (INR) or aPTT. Test characteristics for the optimal R-time threshold calculated in our study were compared against thresholds recommended by the American College of Surgeons for FFP transfusion.ResultsSix hundred and ninety-four pairs of thromboelastography and conventional coagulation tests were performed in 550 patients, with 144 patients having additional pairs of tests after the first hour. The R-time was able to detect procoagulant factor deficiency (INR ≥1.5 AUROC 0.80; 95% CI, 0.75 to 0.85; aPTT ≥40 seconds AUROC 0.85; 95% 0.80 to 0.89) and severe procoagulant factor deficiency (INR ≥2.0 AUROC 0.82; 95% CI, 0.73 to 0.99; aPTT ≥60 seconds AUROC 0.89; 95% CI, 0.81 to 0.98) with good accuracy. Optimal thresholds to maximize sensitivity and specificity were 3.9 minutes for detection of INR ≥1.5, 4.1 minutes for detection of aPTT ≥40 seconds, 4.3 minutes for detection of INR ≥2.0, and 4.3 for detection of aPTT ≥60 seconds. Currently recommended R-time thresholds for FFP transfusion had 100% specificity for detecting procoagulant factor deficiency, but low sensitivity (3% to 7%).ConclusionsR-time can detect procoagulant factor deficiency in multitrauma patients with good accuracy, but currently recommended R-time thresholds are highly specific and not sensitive. Use of low-sensitivity thresholds might result in undertreatment of many patients with procoagulant factor deficiency.Copyright © 2020 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.