• Anesthesia and analgesia · May 2020

    Prediction of an Acute Hypotensive Episode During an ICU Hospitalization With a Super Learner Machine-Learning Algorithm.

    • Ményssa Cherifa, Alice Blet, Antoine Chambaz, Etienne Gayat, Matthieu Resche-Rigon, and Romain Pirracchio.
    • From the Université de Paris, Paris, France.
    • Anesth. Analg. 2020 May 1; 130 (5): 1157-1166.

    BackgroundAcute hypotensive episodes (AHE), defined as a drop in the mean arterial pressure (MAP) <65 mm Hg lasting at least 5 consecutive minutes, are among the most critical events in the intensive care unit (ICU). They are known to be associated with adverse outcome in critically ill patients. AHE prediction is of prime interest because it could allow for treatment adjustment to predict or shorten AHE.MethodsThe Super Learner (SL) algorithm is an ensemble machine-learning algorithm that we specifically trained to predict an AHE 10 minutes in advance. Potential predictors included age, sex, type of care unit, severity scores, and time-evolving characteristics such as mechanical ventilation, vasopressors, or sedation medication as well as features extracted from physiological signals: heart rate, pulse oximetry, and arterial blood pressure. The algorithm was trained on the Medical Information Mart for Intensive Care dataset (MIMIC II) database. Internal validation was based on the area under the receiver operating characteristic curve (AUROC) and the Brier score (BS). External validation was performed using an external dataset from Lariboisière hospital, Paris, France.ResultsAmong 1151 patients included, 826 (72%) patients had at least 1 AHE during their ICU stay. Using 1 single random period per patient, the SL algorithm with Haar wavelets transform preprocessing was associated with an AUROC of 0.929 (95% confidence interval [CI], 0.899-0.958) and a BS of 0.08. Using all available periods for each patient, SL with Haar wavelets transform preprocessing was associated with an AUROC of 0.890 (95% CI, 0.886-0.895) and a BS of 0.11. In the external validation cohort, the AUROC reached 0.884 (95% CI, 0.775-0.993) with 1 random period per patient and 0.889 (0.768-1) with all available periods and BSs <0.1.ConclusionsThe SL algorithm exhibits good performance for the prediction of an AHE 10 minutes ahead of time. It allows an efficient, robust, and rapid evaluation of the risk of hypotension that opens the way to routine use.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,642 articles already indexed!

We guarantee your privacy. Your email address will not be shared.