• Preventive medicine · Jan 2020

    Comparative Study

    Using machine learning to predict opioid misuse among U.S. adolescents.

    • Dae-Hee Han, Shieun Lee, and Dong-Chul Seo.
    • Department of Applied Health Science, Indiana University School of Public Health in Bloomington, USA.
    • Prev Med. 2020 Jan 1; 130: 105886.

    AbstractThis study evaluated prediction performance of three different machine learning (ML) techniques in predicting opioid misuse among U.S. adolescents. Data were drawn from the 2015-2017 National Survey on Drug Use and Health (N = 41,579 adolescents, ages 12-17 years) and analyzed in 2019. Prediction models were developed using three ML algorithms, including artificial neural networks, distributed random forest, and gradient boosting machine. The performance of the ML prediction models was compared with performance of the penalized logistic regression. The area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) were used as metrics of prediction performance. We used the AUPRC as the primary measure of prediction performance given that it is considered more informative for assessing binary classifiers on imbalanced outcome variable than AUROC. The overall rate of opioid misuse among U.S. adolescents was 3.7% (n = 1521). Prediction performance was similar across the four models (AUROC values range from 0.809 to 0.815). In terms of the AUPRC, the distributed random forest showed the best performance in prediction (0.172) followed by penalized logistic regression (0.162), gradient boosting machine (0.160), and artificial neural networks (0.157). Findings suggest that machine learning techniques can be a promising technique especially in the prediction of outcomes with rare cases (i.e., when the binary outcome variable is heavily lopsided) such as adolescent opioid misuse.Copyright © 2019 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…