Biomechanics and modeling in mechanobiology
-
Biomech Model Mechanobiol · Feb 2019
Fluid-structure interaction simulation of the brain-skull interface for acute subdural haematoma prediction.
Traumatic brain injury is a leading cause of disability and mortality. Finite element-based head models are promising tools for enhanced head injury prediction, mitigation and prevention. The reliability of such models depends heavily on adequate representation of the brain-skull interaction. ⋯ The modified model is validated against brain-skull relative displacement and intracranial pressure responses and subsequently imposed to an experimentally determined loading known to cause acute subdural haematoma (ASDH). Compared to the original model, the modified model achieves an improved validation performance in terms of brain-skull relative motion and is able to predict the occurrence of ASDH more accurately, indicating the superiority of the FSI approach for brain-skull interface modelling. The introduction of the FSI approach to represent the fluid behaviour of the CSF and its interaction with the brain and skull is crucial for more accurate head injury predictions.
-
Biomech Model Mechanobiol · Feb 2019
Assessment of intervertebral disc degeneration-related properties using finite element models based on [Formula: see text]-weighted MRI data.
Quantitative magnetic resonance imaging (MRI) provides useful information about intervertebral disc (IVD) biomechanical properties, especially those in relation to the fluid phase. These properties may improve IVD finite element (FE) models using data closer to physiological reality. The aim of this study is to investigate IVD degeneration-related properties using a coupling between MRI and FE modeling. ⋯ The results confirmed that the two developed FE models were able to predict the mechanical response of uniaxial time-dependent compressive test and the redistribution of porosity after load. A slight difference between the measured and the numerical local bulges of the disc was found. This study suggests that from the coupling between MRI imaging in different state of load and finite element modeling we can deduce relevant information that can be used in the assessment of the early intervertebral disc degeneration changes.