Biomechanics and modeling in mechanobiology
-
Biomech Model Mechanobiol · Jun 2019
Lateral impacts correlate with falx cerebri displacement and corpus callosum trauma in sports-related concussions.
Corpus callosum trauma has long been implicated in mild traumatic brain injury (mTBI), yet the mechanism by which forces penetrate this structure is unknown. We investigated the hypothesis that coronal and horizontal rotations produce motion of the falx cerebri that damages the corpus callosum. We analyzed previously published head kinematics of 115 sports impacts (2 diagnosed mTBI) measured with instrumented mouthguards and used finite element (FE) simulations to correlate falx displacement with corpus callosum deformation. ⋯ Consistent with model results, we found indications of corpus callosum trauma in diffusion tensor imaging of the mTBI athletes. For a measured alteration of consciousness, depressed fractional anisotropy and increased mean diffusivity indicated possible damage to the mid-posterior corpus callosum. Our results suggest that the corpus callosum may be sensitive to coronal and horizontal rotations because they drive lateral motion of a relatively stiff membrane, the falx, in the direction of commissural fibers below.
-
Biomech Model Mechanobiol · Apr 2019
Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage.
Transcatheter aortic valve replacement (TAVR) has emerged as an effective alternative to conventional surgical valve replacement in high-risk patients afflicted by severe aortic stenosis. Despite newer-generation devices enhancements, post-procedural complications such as paravalvular leakage (PVL) and related thromboembolic events have been hindering TAVR expansion into lower-risk patients. Computational methods can be used to build and simulate patient-specific deployment of transcatheter aortic valves (TAVs) and help predict the occurrence and degree of PVL. ⋯ Furthermore, parametric analyses demonstrated that positioning and balloon over-expansion may have a direct impact on the post-deployment TAVR performance, achieving as high as 47% in PVL volume reduction. While the model predicted very well clinical data, further validation on a larger cohort of patients is needed to verify the level of the model's predictions in various patient-specific conditions. This study demonstrated that rigorous and realistic patient-specific numerical models could potentially serve as a valuable tool to assist physicians in pre-operative TAVR planning and TAV selection to ultimately reduce the risk of clinical complications.
-
Biomech Model Mechanobiol · Feb 2019
Fluid-structure interaction simulation of the brain-skull interface for acute subdural haematoma prediction.
Traumatic brain injury is a leading cause of disability and mortality. Finite element-based head models are promising tools for enhanced head injury prediction, mitigation and prevention. The reliability of such models depends heavily on adequate representation of the brain-skull interaction. ⋯ The modified model is validated against brain-skull relative displacement and intracranial pressure responses and subsequently imposed to an experimentally determined loading known to cause acute subdural haematoma (ASDH). Compared to the original model, the modified model achieves an improved validation performance in terms of brain-skull relative motion and is able to predict the occurrence of ASDH more accurately, indicating the superiority of the FSI approach for brain-skull interface modelling. The introduction of the FSI approach to represent the fluid behaviour of the CSF and its interaction with the brain and skull is crucial for more accurate head injury predictions.
-
Biomech Model Mechanobiol · Feb 2019
Assessment of intervertebral disc degeneration-related properties using finite element models based on [Formula: see text]-weighted MRI data.
Quantitative magnetic resonance imaging (MRI) provides useful information about intervertebral disc (IVD) biomechanical properties, especially those in relation to the fluid phase. These properties may improve IVD finite element (FE) models using data closer to physiological reality. The aim of this study is to investigate IVD degeneration-related properties using a coupling between MRI and FE modeling. ⋯ The results confirmed that the two developed FE models were able to predict the mechanical response of uniaxial time-dependent compressive test and the redistribution of porosity after load. A slight difference between the measured and the numerical local bulges of the disc was found. This study suggests that from the coupling between MRI imaging in different state of load and finite element modeling we can deduce relevant information that can be used in the assessment of the early intervertebral disc degeneration changes.
-
Biomech Model Mechanobiol · Aug 2017
Anisotropic finite element models for brain injury prediction: the sensitivity of axonal strain to white matter tract inter-subject variability.
Computational models incorporating anisotropic features of brain tissue have become a valuable tool for studying the occurrence of traumatic brain injury. The tissue deformation in the direction of white matter tracts (axonal strain) was repeatedly shown to be an appropriate mechanical parameter to predict injury. However, when assessing the reliability of axonal strain to predict injury in a population, it is important to consider the predictor sensitivity to the biological inter-subject variability of the human brain. ⋯ On the contrary, the localization of the maximum axonal strain was consistent: the peak of strain was typically located in a 2 cm3 volume of the brain. For a sport concussive event, the predictor was capable of discerning between non-injurious and concussed populations in several areas of the brain. It was concluded that, despite its sensitivity to biological variability, axonal strain is an appropriate mechanical parameter to predict traumatic brain injury.