Lancet neurology
-
Comment Letter
Clipping or coiling: the first step for ruptured aneurysms.
-
Randomized Controlled Trial Multicenter Study
The Paracetamol (Acetaminophen) In Stroke (PAIS) trial: a multicentre, randomised, placebo-controlled, phase III trial.
High body temperature in the first 12-24 h after stroke onset is associated with poor functional outcome. The Paracetamol (Acetaminophen) In Stroke (PAIS) trial aimed to assess whether early treatment with paracetamol improves functional outcome in patients with acute stroke by reducing body temperature and preventing fever. ⋯ Netherlands Heart Foundation.
-
Randomized Controlled Trial
Risk of recurrent subarachnoid haemorrhage, death, or dependence and standardised mortality ratios after clipping or coiling of an intracranial aneurysm in the International Subarachnoid Aneurysm Trial (ISAT): long-term follow-up.
Our aim was to assess the long-term risks of death, disability, and rebleeding in patients randomly assigned to clipping or endovascular coiling after rupture of an intracranial aneurysm in the follow-up of the International Subarachnoid Aneurysm Trial (ISAT). ⋯ UK Medical Research Council.
-
Acquired myasthenia gravis (MG) is an autoimmune disorder of the neuromuscular junction in which patients experience fluctuating skeletal muscle weakness that often affects selected muscle groups preferentially. The target of the autoimmune attack in most cases is the skeletal muscle acetylcholine receptor (AChR), but in others, non-AChR components of the neuromuscular junction, such as the muscle-specific receptor tyrosine kinase, are targeted. ⋯ Accumulating evidence suggests that clinical MG subgroups might respond differently to treatment. In this Review, we provide current information about the epidemiology, immunopathogenesis, clinical presentations, diagnosis, and treatment of MG, including emerging therapeutic strategies.
-
Restorative cell-based and pharmacological therapies for experimental stroke substantially improve functional outcome. These therapies target several types of parenchymal cells (including neural stem cells, cerebral endothelial cells, astrocytes, oligodendrocytes, and neurons), leading to enhancement of endogenous neurogenesis, angiogenesis, axonal sprouting, and synaptogenesis in the ischaemic brain. ⋯ The molecular pathways activated by these therapies, which induce remodelling of the injured brain via angiogenesis, neurogenesis, and axonal and dendritic plasticity, are discussed. The ease of treating intact brain tissue to stimulate functional benefit in restorative therapy compared with treating injured brain tissue in neuroprotective therapy might more readily help with translation of restorative therapy from the laboratory to the clinic.