Lancet neurology
-
The infection of the nervous system by the cystic larvae of Taenia solium (neurocysticercosis) is a frequent cause of seizure disorders. Neurocysticercosis is endemic or presumed to be endemic in many low-income countries. ⋯ This knowledge has led to individualised treatment approaches that account for the involvement of parenchymal or extraparenchymal spaces, the number and form of parasites, and the extent of degeneration and associated inflammation. Clinical investigations are focused on development of effective treatments and reduction of side-effects induced by treatment, such as seizures, hydrocephalus, infarcts, and neuroinjury.
-
Review
Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes.
In the past two decades, structural and functional neuroimaging findings have greatly modified longstanding notions regarding the pathophysiology of amyotrophic lateral sclerosis (ALS). Neuroimaging studies have shown that anatomical and functional lesions spread beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. Both MRI and PET studies have shown early and diffuse loss of inhibitory cortical interneurons in the motor cortex (increased levels of functional connectivity and loss of GABAergic neurons, respectively) and diffuse gliosis in white-matter tracts. ⋯ A possible role of PET in the diagnosis of ALS has recently been proposed. However, most neuroimaging studies have pitfalls, such as a small number and poor clinical characterisation of patients, absence of adequate controls, and scarcity of longitudinal assessments. Studies involving international collaborations, standardised assessments, and large patient cohorts will overcome these shortcomings and provide further insight into the pathogenesis of ALS.
-
Spinal cord injury is currently incurable and treatment is limited to minimising secondary complications and maximising residual function by rehabilitation. Improved understanding of the pathophysiology of spinal cord injury and the factors that prevent nerve and tissue repair has fuelled a move towards more ambitious experimental treatments aimed at promoting neuroprotection, axonal regeneration, and neuroplasticity. ⋯ However, in view of recent advances in spinal cord injury research and demand from patients, clinicians, and the scientific community to push promising experimental treatments to the clinic, momentum and optimism exist for the translation of candidate experimental treatments to clinical spinal cord injury. The ability to rescue, reactivate, and rewire spinal systems to restore function after spinal cord injury might soon be within reach.
-
Elizabeth Bradbury is a Medical Research Council Senior Fellow at King's College London (London, UK). She trained as a neuroscientist at the Institute of Psychiatry and St Thomas' Hospital in London before becoming a group leader at King's in 2003. Her research focuses on understanding processes of injury and repair and developing therapies to restore function following CNS trauma, with a particular interest in glial scarring, extracellular matrix modification, and neuroplasticity after spinal cord injury.