Anatomical science international
-
Physical exercise, such as forced treadmill running and swimming, can sufficiently improve mechanical allodynia and heat hyperalgesia in animal models of neuropathic pain (NPP), including partial sciatic nerve ligation, chronic constriction injury, and spinal nerve ligation models. Thus, physical exercise has been established as a low-cost, safe, and effective way to manage NPP conditions, but the exact mechanisms underlying such exercise-induced hypoalgesia (EIH) are not fully understood. ⋯ Relevant studies have demonstrated that physical exercise can dramatically alter the levels of inflammatory cytokines, neurotrophins, neurotransmitters, endogenous opioids, and histone acetylation at various sites in the nervous system, such as injured peripheral nerves, dorsal root ganglia, and spinal dorsal horn in animal models of NPP, thereby contributing to the production of EIH. These results suggest that EIH is produced through multiple cellular and molecular events in the pain pathway.
-
Review
Molecular mechanisms of experience-dependent structural and functional plasticity in the brain.
Experiences and environments have a variety of effects on brain plasticity at levels ranging from the molecular and cellular to the behavioral. Brain plasticity is one of the most important characteristics of animal survival. In particular, environmental enrichment and exercise induce many structural and functional changes in the brain, and it is noteworthy that these changes result in further beneficial effects at behavioral levels, such as improved learning behavior and antidepressant effects. ⋯ However, the enriched environment- and exercise-induced mechanisms underlying the structural and behavioral effects in the brain remain poorly understood. In this review I discuss the molecular mechanisms of environment- and experience-dependent brain plasticity based on the results of studies carried out by our research group at the Department of Neuroscience and Cell Biology, Osaka University. This review consists of three parts: first, a description of a role for the motor protein KIF1A in enhanced synaptogenesis and memory function induced by environmental enrichment; second, a discussion of the function of the 5-HT3 receptor in hippocampal neurogenesis and behavioral changes induced by exercise; third, a discussion of the role of the 5-HT3 receptor in fear extinction.
-
Traditionally, surgical training meant on-the-job training with live patients in an operating room. However, due to advancing surgical techniques, such as minimally invasive surgery, and increasing safety demands during procedures, human cadavers have been used for surgical training. When considering the use of human cadavers for surgical training, one of the most important factors is their preservation. ⋯ The saturated salt solution method is simple, carries a low risk of infection, and is relatively low cost. Although more research is needed, this method seems to be sufficiently useful for surgical training and has noteworthy features that expand the capability of clinical training. The saturated salt solution method will contribute to a wider use of cadavers for surgical training.
-
We investigated 923 cervical vertebrae belonging to late-antiquity and medieval skeletal remains and assessed the qualitative and quantitative structural characteristics of transverse foramens (TF) and additional vascular canals. We also reviewed the pertinent literature. Double TF were chiefly observed in C6 (with a right/left side prevalence of 35.7 and 44.4%, respectively) and C5 vertebrae (23.6 and 23.9%, right/left side, respectively), while unclosed TF were mainly documented in C1 vertebrae (8.4%). ⋯ There was a significant correlation between TF diameter and stature, but only on the right side. The mean area of the arcuate foramen was lower than the mean area of the ipsilateral TF (24.5 ± 5.7 vs 28.5 ± 7.7 mm(2), respectively; p = 0.048), possibly causing compression of the vertebral artery within the arcuate foramen. The study of human vertebrae excavated from archaeological sites is a simple and effective way to analyze the morphology and quantitative anatomy of vascular foramens.
-
Extracellular purine nucleotides and nucleosides play important roles in the nervous system, e.g., neurotransmission, neuromodulation, chemoattraction and acute inflammation. Extracellular nucleotides act through ATP receptors (P2 receptors). P2 receptors are classified into two families: the P2X receptors are ionotropic ligand-gated ion channels and the P2Y receptors are metabotropic G-protein-coupled receptors. ⋯ A prominent signaling pathway in the development of neuropathic pain involves ATP acting on microglial purinergic receptors. This review focuses on the expression of P2X and P2Y receptors mRNAs in the pain transmission pathway, i.e., in the dorsal root ganglion (DRG) and spinal cord. Furthermore, we suggest that the multiple microglial P2Y receptors activated by peripheral nerve injury may play a key role in the development of neuropathic pain.