Neurocritical care
-
Current intensive care unit (ICU) treatment strategies for traumatic brain injury (TBI) care focus on intracranial pressure (ICP)- and cerebral perfusion pressure (CPP)-directed therapeutics, dictated by guidelines. Impaired cerebrovascular reactivity in moderate/severe TBI is emerging as a major associate with poor outcome and appears to dominate the landscape of physiologic derangement over the course of a patient's ICU stay. Within this article, we review the literature on the known drivers of impaired cerebrovascular reactivity in adult TBI, highlight the current knowledge surrounding the impact of guideline treatment strategies on continuously monitored cerebrovascular reactivity, and discuss current treatment paradigms for impaired reactivity. ⋯ To date, the literature suggests there is a limited impact of such ICP/CPP guideline-based therapies on cerebrovascular reactivity, with large portions of a given patients ICU period spent with impaired cerebrovascular reactivity. Emerging treatment paradigms focus on the targeting individualized CPP and ICP thresholds based on cerebrovascular reactivity, without directly targeting the pathways involved in its dysfunction. Further work involved in uncovering the molecular pathways involved in impaired cerebrovascular reactivity is required, so that we can develop therapeutics directed at its prevention and treatment.
-
Telemetric intracranial pressure (ICP) monitoring is a new method of measuring ICP which eliminates some of the shortcomings of previous methods. However, there are limited data on specific characteristics, including the advantages and disadvantages of this method. The main aim of this study was to demonstrate the indications, benefits, and complications of telemetric ICP monitoring. ⋯ The associated complication rate was 7.1%. Despite the increasing application of telemetric monitoring devices, studies to evaluate specific characteristics of this method have been infrequent and inadequate. Future research using a higher level of scientific methods is needed to evaluate advantage and disadvantages.
-
Traumatic brain injury (TBI) is associated with majority of trauma deaths, and objective tools are required to understand the severity of injury. The application of a biomarker like procalcitonin (PCT) in TBI may allow for assessment of severity and thus aid in prognostication and correlation with mortality and outcome. ⋯ This observational study demonstrates the poor correlation between PCT concentrations with outcome at days 1, 2, and 5 post-injury. The predicted relationship between PCT levels and outcome was not confirmed, and that these results do not support the prognostic utility of PCT biomarker in this population for outcome (mortality) assessment in TBI patients with or without extracranial injuries.
-
Meta Analysis
Induced Hypothermia in Patients with Cardiac Arrest and a Non-shockable Rhythm: Meta-analysis and Trial Sequential Analysis.
Controversy surrounds utilization of induced hypothermia (IHT) in comatose cardiac arrest (CA) survivors with a non-shockable rhythm. ⋯ In this meta-analysis of 9 studies, the utilization of IHT was not associated with a survival benefit at discharge. Although the meta-analysis showed lack of benefit of IHT in terms of FNO and survivals beyond 90 days, the corresponding TSA showed high probability of type-II statistical error, and therefore more randomized controlled trials powered for these outcomes are needed.