Journal of physics. Condensed matter : an Institute of Physics journal
-
J Phys Condens Matter · May 2018
Corrigendum: Rapid freezing of water under dynamic compression (2018 J. Phys.: Condens. Matter 30 233002).
Corrigendum.
-
J Phys Condens Matter · Aug 2017
Corrigendum: Hyperuniformity variation with quasicrystal local isomorphism class.
A prefactor was omitted in Equation (7) of the initial manuscript. The correct form of the equation is provided in this Corrigendum.
-
J Phys Condens Matter · Sep 2013
On the distribution of DNA translocation times in solid-state nanopores: an analysis using Schrödinger's first-passage-time theory.
In this short paper, a correction is made to the recently proposed solution of Li and Talaga to a 1D biased diffusion model for linear DNA translocation, and a new analysis will be given to their data. It was pointed out by us recently that this 1D linear translocation model is equivalent to the one that was considered by Schrödinger for the Ehrenhaft–Millikan measurements on electron charge. Here, we apply Schrödinger’s first-passage-time distribution formula to the data set in Li and Talaga. ⋯ In regime II, the apparent diffusion constant exhibits a quadratic dependence on the applied electric field, suggesting a mechanism of Taylor-dispersion effect likely due the electro-osmotic flow field in the nanopore channel. This analysis yields a dispersion-free diffusion constant value of 11.2 nm2 µs-1 for the segment of DNA inside the nanopore, which is in quantitative agreement with the Stokes–Einstein theory. The implication of Schrödinger’s formula for DNA sequencing is discussed.
-
In the celebrated paper on the reciprocal relation for the kinetic coefficients in irreversible processes, Onsager (1931 Phys. Rev. 37 405) extended Rayleigh's principle of the least energy dissipation to general irreversible processes. In this paper, I shall show that this variational principle gives us a very convenient framework for deriving many established equations which describe the nonlinear and non-equilibrium phenomena in soft matter, such as phase separation kinetics in solutions, gel dynamics, molecular modeling for viscoelasticity nemato-hydrodynamics, etc. Onsager's variational principle can therefore be regarded as a solid general basis for soft matter physics.
-
Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma, and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. ⋯ Increases in the mean fMLP concentration beyond the K(D) of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against beta(2)-integrins leads to a significant reduction but not an elimination of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.