Cells
-
The prevalence of arthritic diseases is increasing in developed countries, but effective treatments are currently lacking. The injection of mesenchymal stem cells (MSCs) represents a promising approach to counteract the degenerative and inflammatory environment characterizing those pathologies, such as osteoarthritis (OA). However, the majority of clinical approaches based on MSCs are used within an autologous paradigm, with important limitations. ⋯ Among the trophic factors secreted by MSCs, extracellular vesicles (EVs) are emerging as a promising candidate for the treatment of arthritic joints. In the present review, the application of umbilical cord MSCs and their secretome as innovative therapeutic approaches in the treatment of arthritic joints will be examined. With the prospective of routine clinical applications, umbilical cord MSCs and EVs will be discussed also within an industrial and regulatory perspective.
-
Heterogeneity in cell populations poses a significant challenge for understanding complex cell biological processes. The analysis of cells at the single-cell level, especially single-cell RNA sequencing (scRNA-seq), has made it possible to comprehensively dissect cellular heterogeneity and access unobtainable biological information from bulk analysis. Recent efforts have combined scRNA-seq profiles with genomic or proteomic data, and show added value in describing complex cellular heterogeneity than transcriptome measurements alone. ⋯ We then summarize their advantages and limitations along with their biomedical applications. The efforts of integrating the transcriptome profile with highly multiplexed proteomic and genomic data are thoroughly reviewed with results showing the integrated data being more informative than transcriptome data alone. Lastly, the latest progress toward commercialization, the remaining challenges, and future perspectives on the development of scRNA-seq technologies are briefly discussed.