The journal of applied laboratory medicine
-
Coronavirus disease 2019 (COVID-19) was formally characterized as a pandemic on March 11, 2020. Since that time, the COVID-19 pandemic has led to unprecedented demand for healthcare resources. The purpose of this study was to identify changes in laboratory test utilization in the setting of increasing local incidence of COVID-19. ⋯ Increasing local incidence of COVID-19 had a profound impact on laboratory operations. While volume increases were seen for laboratory tests related to COVID-19 diagnostics and management, including some with limited evidence to support their use, overall testing volumes decreased substantially. During events such as COVID-19, monitoring of such patterns can help inform laboratory management, staffing, and test stewardship recommendations for managing resource and supply availability.
-
Comparative Study
Multi-Platform Comparison of SARS-CoV-2 Serology Assays for the Detection of COVID-19.
COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel beta-coronavirus that is responsible for the 2019 coronavirus pandemic. Acute infections should be diagnosed by polymerase chain reaction (PCR) based tests, but serology tests can demonstrate previous exposure to the virus. ⋯ Our data demonstrates that the Diazyme, Roche, and Abbott SARS-CoV-2 serology assays have similar clinical performances. We demonstrated a low false-positive rate across all 3 platforms and observed that false positives observed on the Roche platform are unique compared to those observed on the Diazyme or Abbott assays. Using multiple platforms in tandem increases the PPVs, which is important when screening populations with low disease prevalence.
-
Platelet dysfunction often accompanies trauma-induced coagulopathy. Because soluble fibrin impairs platelet glycoprotein VI (GPVI) signaling and platelets of trauma patients can display impaired calcium mobilization, we explored the role of fibrinolysis on platelet dysfunction during trauma. ⋯ During trauma, D-dimer and FDPs inhibit platelets, potentially via GPVI and integrin αIIbβ3 engagement, contributing to a fibrinolysis-dependent platelet loss-of-function phenotype.
-
Little is known about the performance of the Roche novel severe acute respiratory syndrome coronavirus 2 antibody (anti-SARS-CoV-2) assay. We provide an extensive evaluation of this fully automated assay on Cobas e801/e602 immunoassay analyzers. ⋯ The Roche anti-SARS-CoV-2 assay shows excellent performance with minimal cross-reactivity from other viral and confounding antibodies. Antibody development and seroconversion appears quite early.