Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
-
Annu Int Conf IEEE Eng Med Biol Soc · Aug 2016
3D force/torque characterization of emergency cricothyroidotomy procedure using an instrumented scalpel.
Emergency Cricothyroidotomy (CCT) is a surgical procedure performed to secure a patient's airway. This high-stakes, but seldom-performed procedure is an ideal candidate for a virtual reality simulator to enhance physician training. ⋯ We analyze the upper force and torque thresholds experienced at the human-scalpel interface. We then group individual surgical cuts based on style of cut and cut medium and perform a regression analysis to create two models that allow us to predict the style of cut performed and the cut medium.
-
Annu Int Conf IEEE Eng Med Biol Soc · Aug 2016
Influence of electrode configuration on the electric field distribution during transcutaneous spinal direct current stimulation of the cervical spine.
Transcutaneous spinal direct current stimulation (tsDCS) is a recent technique with promising neuromodulatory effects on spinal neuronal circuitry. The main objective of the present study was to perform a finite element analysis of the electric field distribution in tsDCS in the cervical spine region, with varying electrode configurations and geometry. A computational model of a human trunk was generated with nine tissue meshes. ⋯ In configuration A, the values were found to be <; 0.15 V/m through the entire spinal cord. Electric fields with magnitude above 0.15 V/m are thought to be effective in neuromodulation of the human cerebral cortex, so the configurations B1 and B2 could be an optimal choice for cervical tsDCS protocols. Computational studies using realistic models may be a powerful tool to predict physical effects of tsDCS on the cervical spinal cord and to optimize electrode placement focused on specific neurologic patient needs related with upper limb function.
-
Annu Int Conf IEEE Eng Med Biol Soc · Aug 2016
Computation offloading for real-time health-monitoring devices.
Among the major challenges in the development of real-time wearable health monitoring systems is to optimize battery life. One of the major techniques with which this objective can be achieved is computation offloading, in which portions of computation can be partitioned between the device and other resources such as a server or cloud. In this paper, we describe a novel dynamic computation offloading scheme for real-time wearable health monitoring devices that adjusts the partitioning of data between the wearable device and mobile application as a function of desired classification accuracy.
-
Annu Int Conf IEEE Eng Med Biol Soc · Aug 2016
Non-invasive optical imaging techniques for burn-injured tissue detection for debridement surgery.
Burn debridement is a challenging technique that requires significant skill to identify regions requiring excision and appropriate excision depth. A machine learning tool is being developed in order to assist surgeons by providing a quantitative assessment of burn-injured tissue. Three noninvasive optical imaging techniques capable of distinguishing between four kinds of tissue-healthy skin, viable wound bed, deep burn, and shallow burn-during serial burn debridement in a porcine model are presented in this paper. The combination of all three techniques considerably improves the accuracy of tissue classification, from 0.42 to almost 0.77.
-
Annu Int Conf IEEE Eng Med Biol Soc · Aug 2016
Assessment of sedation-analgesia by means of Poincaré analysis of the electroencephalogram.
Monitoring the levels of sedation-analgesia may be helpful for managing patient stress on minimally invasive medical procedures. Monitors based on EEG analysis and designed to assess general anesthesia cannot distinguish reliably between a light and deep sedation. In this work, the Poincaré plot is used as a nonlinear technique applied to EEG signals in order to characterize the levels of sedation-analgesia, according to observed categorical responses that were evaluated by means of Ramsay Sedation Scale (RSS). ⋯ The ability of the indexes to describe the level of sedation-analgesia, according with the RSS score, was evaluated using the prediction probability (Pk). The results showed that the ratio SD1/SD2FR3 contains useful information about the sedation level, and SD1FR2 and SD2FR2 had the best performance classifying response to noxious stimuli. Models including parameters from Poincaré plot emerge as a good estimator of sedation-analgesia levels.