Physiology & behavior
-
Physiology & behavior · Apr 2014
Panax quinquefolium involves nitric oxide pathway in olfactory bulbectomy rat model.
Olfactory bulbectomy (OBX) is a well known screening model for depression. Panax quinquefolium (PQ) is known for its therapeutic potential against several psychiatric disorders. Nitric oxide (NO), an intercellular messenger has been suggested to play a crucial role in the pathogenesis of depression. ⋯ Treatment with PQ significantly and dose-dependently restored these behavioral, biochemical and molecular alterations associated with OBX. Further, pretreatment of l-NAME with subeffective dose of PQ (100mg/kg) significantly potentiated its protective effects; however l-arginine pretreatment reversed the beneficial effects. The present study suggests that protective effect of P. quinquefolium might involve nitric oxide modulatory pathway against olfactory bulbectomy-induced depression in rats.
-
Physiology & behavior · Apr 2014
Individual differences in the forced swimming test and neurochemical kinetics in the rat brain.
Individual differences in the forced swimming test (FST) could be associated with differential temporal dynamics of gene expression and neurotransmitter activity. We tested juvenile male rats in the FST and classified the animals into those with low and high immobility according to the amount of immobility time recorded in FST. These groups and a control group which did not undergo the FST were sacrificed either 1, 6 or 24 h after the test. ⋯ Regarding neurotransmitters, only accumbal dopamine turnover and hippocampal glutamate content showed an effect of individual differences (i.e. animals with low and high immobility), whereas nearly all parameters showed significant differences across time points. Correlational analyses suggest that immobility in the FST, probably reflecting despair, is related to prefrontal cortical BDNF and to the kinetics observed in several other neurochemical parameters. Taken together, our results suggest that individual differences observed in depression-like behavior can be associated not only with changes in the concentrations of key neurochemical factors but also with differential time courses of such factors.
-
Physiology & behavior · Apr 2014
Role of TNF-α/TNFR1 in intense acute swimming-induced delayed onset muscle soreness in mice.
The injection of cytokines such as TNF-α induces muscle pain. Herein, it was addressed the role of endogenous TNF-α/TNFR1 signaling in intense acute swimming-induced muscle mechanical hyperalgesia in mice. Mice were exposed to water during 30 s (sham) or to a single session of 30-120 min of swimming. ⋯ Exercise induced an increase of myeloperoxidase activity and decrease in reduced glutathione levels in an etanercept-sensitive and TNFR1-dependent manners in the soleus muscle, but not in the gastrocnemius muscle. Concluding, TNF-α/TNFR1 signaling mediates intense acute swimming-induced DOMS by an initial role in the soleus muscle followed by spinal cord, inducing muscle inflammatory hyperalgesia and oxidative stress. The knowledge of these mechanisms might contribute to improve the training of athletes, individuals with physical impairment and intense training such as military settings.
-
Physiology & behavior · Apr 2014
Randomized Controlled TrialPectin is not pectin: a randomized trial on the effect of different physicochemical properties of dietary fiber on appetite and energy intake.
An increased intake of dietary fiber has been associated with reduced appetite and reduced energy intake. Research on the effects of seemingly identical classes of dietary fiber on appetite has, however, resulted in conflicting findings. The present study investigated the effects of different fiber properties, including methods of supplementation, on appetite and energy intake. ⋯ Different methods of supplementation resulted in distinct metabolic parameters. Results suggest that different physicochemical properties of pectin, including methods of supplementation, impact appetite and energy intake differently. Reduced appetite was probably mediated by preload physical properties, whereas inconsistent associations with metabolic parameters were found.
-
The time of day at which meals are consumed is known to impact on behaviour as well as physiological systems. In this study we investigated the behavioural and physiological effects of restricting access to food to the light or dark period in mice maintained on either long or short photoperiods. In both photoperiods, wheel running commenced upon the onset of darkness and was generally confined to the period of darkness. ⋯ The rhythm of expression of liver Bmal1 mRNA was similar in light and dark fed mice after 7 and 35 days on the schedule while the Per1, Per2, Nr1d1 and Dbp mRNA rhythms were delayed on average by 3.5±1.1 h and 3.7±0.9 h in light fed mice after 7 and 35 days respectively compared to dark fed mice. Rhythms of metabolically important genes were shifted in light fed mice compared to dark fed, by 5 h or became arrhythmic. This study shows that not only circadian rhythms facilitate metabolic control, but also different environmental events, including season and feeding opportunities, alter aspects of circadian and metabolic physiology.