Brain circulation
-
Moyamoya disease (MMD), a rare cause of pediatric stroke, is a cerebrovascular occlusive disorder resulting from progressive stenosis of the distal intracranial carotid arteries and their proximal branches. In response to brain ischemia, there is the development of basal collateral vessels, which gives rise to the characteristic angiographic appearance of moyamoya (puff of smoke). If left untreated, the disease can result in overwhelming permanent neurological and cognitive deficits. ⋯ Surgical revascularization, including direct and indirect techniques, remains the mainstay of treatment and has been shown to improve long-term outcome in children with MMD. Various risk factors identified for perioperative complications are as follows: history of TIAs, severity of disease, intraoperative hypotension, hypercapnia and hypovolemia, and substantial reduction in hematocrit intraoperatively. Thus, providing perianesthetic care to pediatric patients undergoing revascularization procedure for MMD is like walking a tightrope, and we present two such cases handled successfully.
-
Stroke is the leading cause of adult disability in the US. Rapid diagnosis and treatment of stroke, in addition to efficacious rehabilitation, is invaluable. The present review aims to report the recent improvements in hybrid operating rooms (hybrid ORs), and in the organization of Neurological intensive care unit (NICUs) and dedicated stroke wards (SWs), which contribute to enhanced stroke treatment. ⋯ The current research indicates that hybrid ORs facilitate surgical innovation and improved patient care through the colocation of advanced imaging modalities and surgical capabilities. Moreover, the recent reorganization of NICUs and SWs may lead to better-quality initial treatment and rehabilitation. The present review also considers the current ER triage protocol for stroke patients, and it concludes with relevant considerations relating to the role of the physical hospital structure and organization in stroke care.
-
Traumatic brain injury (TBI) is a worldwide medical problem, and currently, there are few therapeutic interventions that can protect the brain and improve functional outcomes in patients. Over the last several decades, experimental studies have investigated the pathophysiology of TBI and tested various pharmacological treatment interventions targeting specific mechanisms of secondary damage. Although many preclinical treatment studies have been encouraging, there remains a lack of successful translation to the clinic and no therapeutic treatments have shown benefit in phase 3 multicenter trials. ⋯ High-quality multicenter randomized controlled trials that incorporate these factors are required to maximize the benefits of this experimental therapy. This article therefore summarizes several factors that are important in enhancing the beneficial effects of therapeutic hypothermia in TBI. The current failures of hypothermic TBI clinical trials in terms of clinical protocol design, patient section, and other considerations are discussed and future directions are emphasized.
-
Every year, approximately 1.4 million US citizens visit emergency rooms for traumatic brain injuries. Formerly known as an acute injury, chronic neurodegenerative symptoms such as compromised motor skills, decreased cognitive abilities, and emotional and behavioral changes have caused the scientific community to consider chronic aspects of the disorder. The injury causing impact prompts multiple cell death processes, starting with neuronal necrosis, and progressing to various secondary cell death mechanisms. ⋯ Referred literature in this paper has been listed in the references section. The data sets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.