Journal of neurosurgery. Spine
-
OBJECTIVEIt is now well accepted that spinopelvic parameters are correlated with clinical outcomes in adult spinal deformity (ASD). The purpose of this study was to determine whether obtaining optimal spinopelvic alignment was absolutely necessary to achieve a minimum clinically important difference (MCID) or substantial clinical benefit (SCB). METHODSA multicenter retrospective review of patients who underwent less-invasive surgery for ASD was conducted. ⋯ CONCLUSIONSAchieving optimal spinopelvic parameters was not a predictor for achieving an MCID or SCB. Since spinopelvic parameters are correlated with clinical outcomes, the authors' findings suggest that the presently accepted optimal spinopelvic parameters may require modification. Other factors, such as improvement in neurological symptoms and/or segmental instability, also likely impacted the clinical outcomes.
-
OBJECTIVEAfter using PROsetta Stone crosswalk tables to calculate Patient-Reported Outcomes Measurement Information System (PROMIS) Physical Function (PF) and Pain Interference (PI) scores, the authors sought to examine 1) correlations with Scoliosis Research Society-22r (SRS-22r) scores, 2) responsiveness to change, and 3) the relationship between baseline scores and 2-year follow-up scores in adult spinal deformity (ASD). METHODSPROsetta Stone crosswalk tables were used to converted SF-36 scores to PROMIS scores for pain and physical function in a cohort of ASD patients with 2-year follow-up. Spearman correlations were used to evaluate the relationship of PROMIS scores with SRS-22r scores. ⋯ CONCLUSIONSThe authors found strong correlations between the SRS-22r Pain and Activity domains with corresponding PROMIS-PI and -PF scores. Pain measurements showed similar and strong ES and aSRM while the function measurements showed similar, moderate ES and aSRM at 2-year follow-up. These data support further exploration of the use of PROMIS-computer adaptive test instruments in ASD.
-
OBJECTIVEThe Michigan Spine Surgery Improvement Collaborative (MSSIC) is a statewide, multicenter quality improvement initiative. Using MSSIC data, the authors sought to identify 90-day adverse events and their associated risk factors (RFs) after cervical spine surgery. METHODSA total of 8236 cervical spine surgery cases were analyzed. ⋯ CONCLUSIONSA multivariate analysis from a large, multicenter, prospective database identified the common adverse events after cervical spine surgery, along with their associated RFs. This information can lead to more informed surgeons and patients. The authors found that early mobilization after cervical spine surgery has the potential to significantly decrease adverse events.
-
Review
Neurological recovery following traumatic spinal cord injury: a systematic review and meta-analysis.
OBJECTIVEPredicting neurological recovery following traumatic spinal cord injury (TSCI) is a complex task considering the heterogeneous nature of injury and the inconsistency of individual studies. This study aims to summarize the current evidence on neurological recovery following TSCI by use of a meta-analytical approach, and to identify injury, treatment, and study variables with prognostic significance. METHODSA literature search in MEDLINE and EMBASE was performed, and studies reporting follow-up changes in American Spinal Injury Association (ASIA) Impairment Scale (AIS) or Frankel or ASIA motor score (AMS) scales were included in the meta-analysis. ⋯ CONCLUSIONSThe authors' meta-analysis provides an overall quantitative description of neurological outcomes associated with TSCI. Moreover, they demonstrated how neurological recovery after TSCI is significantly dependent on injury factors (i.e., severity, level, and mechanism of injury), but is not associated with type of treatment or country of origin. Based on these results, a minimum follow-up of 12 months is recommended for TSCI studies that include patients with neurologically incomplete injury.
-
OBJECTIVEProximal junctional kyphosis (PJK) is, in part, due to altered segmental biomechanics at the junction of rigid instrumented spine and relatively hypermobile non-instrumented adjacent segments. Proper application of posteriorly anchored polyethylene tethers (i.e., optimal configuration and tension) may mitigate adjacent-segment stress and help prevent PJK. The purpose of this study was to investigate the impact of different tether configurations and tensioning (preloading) on junctional range-of-motion (ROM) and other biomechanical indices for PJK in long instrumented spine constructs. ⋯ CONCLUSIONSIn this study, finite element analysis demonstrated UIV+2 Loop and/or Weave tether configurations most effectively mitigated adjacent-segment stress in long instrumented spine constructs. Tether preload dampened ligament forces at the expense of screw loads, and an inflection point (approximately 100 N) was demonstrated above which junctional ROM and IDP worsened (i.e., avoid over-tightening tethers). Results suggest tether configuration and tension influence PJK biomechanics and further clinical research is warranted.