PLoS medicine
-
Meta Analysis
Association between migration and severe maternal outcomes in high-income countries: Systematic review and meta-analysis.
Literature focusing on migration and maternal health inequalities is inconclusive, possibly because of the heterogeneous definitions and settings studied. We aimed to synthesize the literature comparing the risks of severe maternal outcomes in high-income countries between migrant and native-born women, overall and by host country and region of birth. ⋯ In this systematic review of the existing literature applying a single definition of "migrant" women, we found that the differential risk of severe maternal outcomes in migrant versus native-born women in high-income countries varied by host country and region of origin. These data highlight the need to further explore the mechanisms underlying these inequities.
-
Bloodstream infections (BSIs) produced by antibiotic-resistant bacteria (ARB) cause a substantial disease burden worldwide. However, most estimates come from high-income settings and thus are not globally representative. This study quantifies the excess mortality, length of hospital stay (LOS), intensive care unit (ICU) admission, and economic costs associated with ARB BSIs, compared to antibiotic-sensitive bacteria (ASB), among adult inpatients in low- and middle-income countries (LMICs). ⋯ We provide an overview of the impact ARB BSIs in limited resource settings derived from the existing literature. Drug resistance was associated with a substantial disease and economic burden in LMICs. Although, our results show wide heterogeneity between WHO regions, income groups, and pathogen-drug combinations. Overall, there is a paucity of BSI data from LMICs, which hinders implementation of country-specific policies and tracking of health progress.
-
Inappropriate antimicrobial usage is a key driver of antimicrobial resistance (AMR). Low- and middle-income countries (LMICs) are disproportionately burdened by AMR and young children are especially vulnerable to infections with AMR-bearing pathogens. The impact of antibiotics on the microbiome, selection, persistence, and horizontal spread of AMR genes is insufficiently characterized and understood in children in LMICs. This systematic review aims to collate and evaluate the available literature describing the impact of antibiotics on the infant gut microbiome and resistome in LMICs. ⋯ In this study, we observed that antibiotics significantly reduce the diversity and alter the composition of the infant gut microbiome in LMICs, while concomitantly selecting for resistance genes whose persistence can last for months following treatment. Considerable heterogeneity in study methodology, timing and duration of sampling, and sequencing methodology in currently available research limit insights into antibiotic impacts on the microbiome and resistome in children in LMICs. More research is urgently needed to fill this gap in order to better understand whether antibiotic-driven reductions in microbiome diversity and selection of AMR genes place LMIC children at risk for adverse health outcomes, including infections with AMR-bearing pathogens.
-
Klebsiella pneumoniae is the most common pathogen causing neonatal infections, leading to high mortality worldwide. Along with increasing antimicrobial use in neonates, carbapenem-resistant K. pneumoniae (CRKP) has emerged as a severe challenge for infection control and treatment. However, no comprehensive systematic review is available to describe the global epidemiology of neonatal CRKP infections. We therefore performed a systematic review of available data worldwide and combined a genome-based analysis to address the prevalence, clonal diversity, and carbapenem resistance genes of CRKP causing neonatal infections. ⋯ CRKP contributes to a considerable number of neonatal infections and leads to significant neonatal mortality. Neonatal CRKP strains are highly diverse, while ST17 is globally prevalent and merits early detection for treatment and prevention. The dominance of blaNDM carbapenemase genes imposes challenges on therapeutic options in neonates and supports the continued inhibitor-related drug discovery.