Pflügers Archiv : European journal of physiology
-
Comparative Study
Xenon-induced inhibition of Ca2+-regulated transitions in the cell cycle of human endothelial cells.
Xenon is an anesthetic with very few side-effects, yet its targets at the cellular level are still unclear. It interferes with many aspects of intracellular Ca2+ homeostasis, but so far no specific event or defined regulatory complex of the Ca2+-signaling system has been identified. Specific effects of xenon were found by investigating its effects on the cell cycle in human endothelial cells: there is a relationship between two cell cycle transition points, their regulation by Ca2+, and specific blocks induced by xenon. ⋯ An artificial increase of intracellular Ca2+ in the submicromolar range, using a very low dose of the Ca2+ ionophore ionomycin, or a threefold increase of the external Ca2+ concentration suffices to lift the xenon-induced metaphase block; the cells enter anaphase despite the presence of xenon and complete cell division. Thus, the specific but completely reversible inhibition by xenon of the G2-M transition and the block at metaphase suggest an interaction with a Ca2+-dependent event involved in the control of these processes. The results are consistent with the hypothesis that suppression of Ca2+ signals can be considered as a common denominator of the effects of xenon on the cell cycle and on the neuronal system during anesthesia.