Pflügers Archiv : European journal of physiology
-
For long-duration manned space missions to Mars and beyond, reduction of astronaut metabolism by torpor, the metabolic state during hibernation of animals, would be a game changer: Water and food intake could be reduced by up to 75% and thus reducing payload of the spacecraft. Metabolic rate reduction in natural torpor is linked to profound changes in biochemical processes, i.e., shift from glycolysis to lipolysis and ketone utilization, intensive but reversible alterations in organs like the brain and kidney, and in heart rate control via Ca2+. ⋯ Neuro-endocrine factors have been identified as main targets to induce torpor although the exact mechanisms are not known yet. The widespread occurrence of torpor in mammals and examples of human hypometabolic states support the idea of human torpor and its beneficial applications in medicine and space exploration.
-
Increased glomerular capillary pressure (glomerular hypertension) and increased glomerular filtration rate (glomerular hyperfiltration) have been proven to cause glomerulosclerosis in animal models and are likely to be operative in patients. Since podocytes cover the glomerular basement membrane, they are exposed to tensile stress due to circumferential wall tension and to fluid shear stress arising from filtrate flow through the narrow filtration slits and through Bowman's space. In vitro evidence documents that podocytes respond to tensile stress as well as to fluid shear stress. ⋯ Furthermore, podocytes express talin, p130Cas, and fibronectin that are known to undergo a conformational change in response to mechanical force exposing cryptic binding sites. Downstream of mechanosensors, experimental evidence suggests the involvement of MAP kinases, Ca2+ and COX2 in mechanosignaling and an emerging role of YAP/TAZ. In summary, our understanding of mechanotransduction in podocytes is still sketchy, but future progress holds promise to identify targets to alleviate conditions of increased mechanical load.
-
Vasopressin (AVP) induces antidiuresis, thus playing an essential role in body water and electrolyte homeostasis. Its antidiuretic effects are mediated chiefly by V2 vasopressin receptors (V2R) expressed along the distal nephron and collecting duct epithelia. NaCl reabsorption in the distal nephron, which includes the thick ascending limb (TAL) and distal convoluted tubule (DCT), largely depends on the activity of two structurally related Na-(K)-Cl cotransporters, NKCC2 in TAL and NCC in DCT. ⋯ Previous work has specified molecular pathways mediating the effects of V2R activation in TAL and DCT, and protein networks involved in intracellular trafficking and phosphoregulation of the two transporters have been identified. This review summarizes recent progress in understanding AVP signalling mechanisms that are responsible for the activation of NKCC2 and NCC. Implications in the pathophysiology of diseases such as nephrogenic diabetes insipidus, diabetes mellitus and salt-sensitive hypertension are discussed in this context.
-
The medullary thick ascending limb of Henle's loop (mTAL) is crucial for urine-concentrating ability of the kidney. It is water tight and able to dilute the luminal fluid by active transcellular NaCl transport, fueling the counter current mechanism by increasing interstitial osmolality. While chloride is exclusively transported transcellularly, approx. 50% of sodium transport occurs via the paracellular route, driven by the lumen-positive transepithelial potential. ⋯ Acute ex vivo stimulation as well as long-term in vivo water restriction increased equivalent short circuit current as a measure of active transcellular NaCl transport. Intriguingly, in both experimental approaches, this was accompanied by markedly increased paracellular Na+ selectivity. Thus, AVP is able to acutely regulate paracellular cation selectivity in parallel to transcellular NaCl transport, allowing balanced paracellular Na+ absorption under an increased transepithelial driving force.
-
Among the environmental factors that affect blood pressure, dietary sodium chloride has been studied the most, and there is general consensus that increased sodium chloride intake increases blood pressure. There is accruing evidence that chloride may have a role in blood pressure regulation which may perhaps be even more important than that of Na(+). ⋯ Hence, elucidating the role of Cl(-) as an independent player in blood pressure regulation will have clinical and public health implications in addition to advancing our understanding of electrolyte-mediated blood pressure regulation. In this review, we describe the evidence that support an independent role for Cl(-) on hypertension and cardiovascular health.