Cell metabolism
-
There is general agreement that the acute suppression of hepatic glucose production by insulin is mediated by both a direct and an indirect effect on the liver. There is, however, no consensus regarding the relative magnitude of these effects under physiological conditions. ⋯ Here, we review the field to make the case that physiologically direct hepatic insulin action dominates acute suppression of glucose production, but that there is also a delayed, second order regulation of this process via extrahepatic effects. We further provide our views regarding the timing, dominance, and physiological relevance of these effects and discuss novel concepts regarding insulin regulation of adipose tissue fatty acid metabolism and central nervous system (CNS) signaling to the liver, as regulators of insulin's extrahepatic effects on glucose production.
-
Aging has been targeted by genetic and dietary manipulation and by drugs in order to increase lifespan and health span in numerous models. Metformin, which has demonstrated protective effects against several age-related diseases in humans, will be tested in the TAME (Targeting Aging with Metformin) trial, as the initial step in the development of increasingly effective next-generation drugs.
-
Inborn errors of metabolism (IEM) are not unlike common diseases. They often present as a spectrum of disease phenotypes that correlates poorly with the severity of the disease-causing mutations. This greatly impacts patient care and reveals fundamental gaps in our knowledge of disease modifying biology. ⋯ We highlight that existing common disease-derived datasets and networks can be repurposed to generate novel mechanistic insight in IEM and potentially identify candidate modifiers. While understanding disease pathophysiology will advance the IEM field, the ultimate goal should be to understand per individual how their phenotype emerges given their primary mutation on the background of their whole genome, not unlike personalized medicine. We foresee that panomics and network strategies combined with recent experimental innovations will facilitate this.
-
Fasting has been practiced for millennia, but, only recently, studies have shed light on its role in adaptive cellular responses that reduce oxidative damage and inflammation, optimize energy metabolism, and bolster cellular protection. In lower eukaryotes, chronic fasting extends longevity, in part, by reprogramming metabolic and stress resistance pathways. In rodents intermittent or periodic fasting protects against diabetes, cancers, heart disease, and neurodegeneration, while in humans it helps reduce obesity, hypertension, asthma, and rheumatoid arthritis. Thus, fasting has the potential to delay aging and help prevent and treat diseases while minimizing the side effects caused by chronic dietary interventions.
-
Enzymatic oxidation of cholesterol generates numerous distinct bile acids that function both as detergents that facilitate digestion and absorption of dietary lipids, and as hormones that activate four distinct receptors. Activation of these receptors alters gene expression in multiple tissues, leading to changes not only in bile acid metabolism but also in glucose homeostasis, lipid and lipoprotein metabolism, energy expenditure, intestinal motility and bacterial growth, inflammation, liver regeneration, and hepatocarcinogenesis. This review covers the roles of specific bile acids, synthetic agonists, and their cognate receptors in controlling these diverse functions, as well as their current use in treating human diseases.