Journal of biomechanics
-
Journal of biomechanics · Aug 2002
Understanding muscle coordination of the human leg with dynamical simulations.
Muscles coordinate multijoint motion by generating forces that cause reaction forces throughout the body. Thus, a muscle can redistribute existing segmental energy by accelerating some segments and decelerating others. In the process, a muscle may also produce or absorb energy, in which case its summed energetic effect on the segments is positive or negative, respectively. ⋯ In walking, the eccentric quadriceps activity in early stance not only decelerates the leg but also accelerates the trunk. In mid-stance, the uni- and biarticular plantarflexors, by having opposite segmental energetic effects, act in synergy to support the whole body, so segmental potential and kinetic energy exchange can occur. To conclude, the extraction of unmeasurable variables from dynamical simulations emulating task kinematics, kinetics, and EMGs shows how the production of force and energy by individual muscles contribute to the energy flow among the individual segments during task execution.